toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M. url  doi
openurl 
  Title (up) Non-unitary three-neutrino mixing in the early Universe Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 046 - 18pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory  
  Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.  
  Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000959757500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5516  
Permanent link to this record
 

 
Author Bernal, N.; Colucci, S.; Josse-Michaux, F.X.; Racker, J.; Ubaldi, L. url  doi
openurl 
  Title (up) On baryogenesis from dark matter annihilation Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 035 - 30pp  
  Keywords dark matter theory; baryon asymmetry; leptogenesis  
  Abstract We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.  
  Address [Bernal, Nicolas] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326979500035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1659  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title (up) On gravitational waves in Born-Infeld inspired non-singular cosmologies Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 029 - 23pp  
  Keywords alternatives to inflation; modified gravity; physics of the early universe; primordial gravitational waves (theory)  
  Abstract We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.  
  Address [Beltran Jimenez, Jose] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France, Email: jose.beltran@uam.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413332400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3337  
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Schwetz, T.; Zupan, J. url  doi
openurl 
  Title (up) On the annual modulation signal in dark matter direct detection Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 005 - 28pp  
  Keywords dark matter theory; dark matter experiments; dark matter detectors  
  Abstract We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of the DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework of spin-independent elastic scattering. While the DAMA signal satisfies our bounds, severe restrictions on the DM mass can be set for CoGeNT.  
  Address [Herrero-Garcia, Juan; Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: juan.a.herrero@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302949600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1000  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) Optical and X-ray early follow-up of ANTARES neutrino alerts Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 062 - 29pp  
  Keywords gamma ray burst experiments; neutrino astronomy; X-ray telescopes  
  Abstract High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or Xray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with Xray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.  
  Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Feis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: dornic@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372467600063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2588  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title (up) Palatini actions and quantum gravity phenomenology Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 018 - 15pp  
  Keywords quantum gravity phenomenology; cosmic singularity  
  Abstract We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.  
  Address [Olmo, GJ] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296767600018 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 816  
Permanent link to this record
 

 
Author Domcke, V.; Ema, Y.; Sandner, S. url  doi
openurl 
  Title (up) Perturbatively including inhomogeneities in axion inflation Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 019 - 24pp  
  Keywords axions; inflation; particle physics- cosmology connection  
  Abstract Axion inflation, i.e. an axion-like inflaton coupled to an Abelian gauge field through a Chern-Simons interaction, comes with a rich and testable phenomenology. This is particularly true in the strong backreaction regime, where the gauge field production heavily impacts the axion dynamics. Lattice simulations have recently demonstrated the importance of accounting for inhomogeneities of the axion field in this regime. We propose a perturbative scheme to account for these inhomogeneities while maintaining high computational efficiency. Our goal is to accurately capture deviations from the homogeneous axion field approximation within the perturbative regime as well as self -consistently determine the onset of the nonperturbative regime.  
  Address [Domcke, Valerie] CERN, Theoret Phys Dept, Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185016600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6020  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title (up) Physics reach of the XENON1T dark matter experiment Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 027 - 37pp  
  Keywords dark matter simulations; dark matter experiments  
  Abstract The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80+/-0.15) . 10(-4) (kg.day.keV)(-1), mainly due to the decay of Rn-222 daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 +/- 0.1) (t.y)(-1) from radiogenic neutrons, (1.8+/-0.3) . 10(-2) (t.y)(-1) from coherent scattering of neutrinos, and less than 0.01 (t.y)(-1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Pro file Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency L-eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 tonne fiducial volume, the sensitivity reaches a minimum cross section of 1.6 . 10(-47) cm(2) at m(chi) = 50 GeV/c(2).  
  Address [Aprile, E.; Anthony, M.; Contreras, H.; de Perio, P.; Goetzke, L. W.; Greene, Z.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.; Weber, M.; Zhang, Y.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA, Email: cyril.grignon@uni-mainz.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393286400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2950  
Permanent link to this record
 

 
Author LISA Cosmology Working Group (Bartolo, N. et al); Figueroa, D.G. url  doi
openurl 
  Title (up) Probing anisotropies of the Stochastic Gravitational Wave Background with LISA Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue Pages 009 - 65pp  
  Keywords gravitational wave detectors; gravitational waves / sources; gravitational waves / theory; physics of the early universe  
  Abstract We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discuss the main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that beta Omega(GW) similar to 2 x 10(-11) is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor similar to 10(3) beta relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources.  
  Address [Bartolo, Nicola; Bertacca, Daniele; Peloso, Marco; Ricciardone, Angelo] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: angelo.ricciardone@pd.infn.it  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000899443700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5437  
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I. url  doi
openurl 
  Title (up) Probing decaying heavy dark matter with the 4-year IceCube HESE data Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 027 - 36pp  
  Keywords dark matter theory; neutrino astronomy; neutrino detectors; ultra high energy photons and neutrinos  
  Abstract After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20TeV and 2PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.  
  Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406420500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3243  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva