|   | 
Details
   web
Records
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title (down) Probing the Extragalactic Mid-infrared Background with HAWC Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 933 Issue 2 Pages 223 - 8pp
Keywords
Abstract The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes in stars and compact objects since the epoch of recombination. Measuring the EBL density directly is challenging, especially in the near-to-far-infrared wave band, mainly due to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits on the EBL by studying the effects of gamma-ray absorption in the very high energy (VHE: >100 GeV) spectra of distant blazars. The High Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is one of the few instruments sensitive to gamma rays with energies above 10 TeV. This offers the opportunity to probe the EBL in the near/mid-IR region: lambda = 1-100 μm. In this study, we fit physically motivated emission models to Fermi-LAT gigaelectronvolt data to extrapolate the intrinsic teraelectronvolt spectra of blazars. We then simulate a large number of absorbed spectra for different randomly generated EBL model shapes and calculate Bayesian credible bands in the EBL intensity space by comparing and testing the agreement between the absorbed spectra and HAWC extragalactic observations of two blazars. The resulting bands are in agreement with current EBL lower and upper limits, showing a downward trend toward higher wavelength values lambda > 10 μm also observed in previous measurements.
Address [Albert, A.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: mkf5479@psu.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000826698600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5295
Permanent link to this record
 

 
Author LISA Cosmology Working Group (Bartolo, N. et al); Figueroa, D.G.
Title (down) Probing anisotropies of the Stochastic Gravitational Wave Background with LISA Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue Pages 009 - 65pp
Keywords gravitational wave detectors; gravitational waves / sources; gravitational waves / theory; physics of the early universe
Abstract We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discuss the main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that beta Omega(GW) similar to 2 x 10(-11) is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor similar to 10(3) beta relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources.
Address [Bartolo, Nicola; Bertacca, Daniele; Peloso, Marco; Ricciardone, Angelo] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: angelo.ricciardone@pd.infn.it
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000899443700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5437
Permanent link to this record
 

 
Author Chiera, N.M.; Maugeri, E.A.; Danilov, I.; Balibrea-Correa, J.; Domingo-Pardo, C.; Koster, U.; Lerendegui-Marco, J.; Veicht, M.; Zivadinovic, I.; Schumann, D.
Title (down) Preparation of PbSe targets for Se-79 neutron capture cross section studies Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1029 Issue Pages 166443 - 7pp
Keywords Lead selenide; Selenium-79; Neutron capture; PbSe target; Se separation
Abstract A methodology for the production of PbSe targets for Se-79 neutron capture cross section studies is presented. PbSe material was synthesized by direct reaction of its constituents at high temperature, and characterized by X-ray diffraction. Thin PbSe targets, produced for cross section experiments with the surrogate reaction method, were obtained by applying a physical vapor deposition technique, and their morphology and composition were analyzed by X-ray fluorescence, Scanning Electron Microscopy, and Energy dispersive X-ray spectroscopy. (PbSe)-Se-79 targets produced for cross section measurements with the Time of Flight method were characterized by gamma-ray spectroscopy. Finally, a procedure for the recovery of Se from PbSe is suggested. The purity of the retrieved Se was determined with Inductively Coupled Plasma Optical Emission Spectroscopy.
Address [Chiera, Nadine M.; Maugeri, Emilio Andrea; Danilov, Ivan; Veicht, Mario; Zivadinovic, Ivan; Schumann, Dorothea] Paul Scherrer Inst, Villigen, Switzerland, Email: nadine-mariel.chiera@psi.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000783012200016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5204
Permanent link to this record
 

 
Author Dai, L.R.; Molina, R.; Oset, E.
Title (down) Prediction of new T-cc states of D* D* and D-s*D* molecular nature Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 1 Pages 016029 - 12pp
Keywords
Abstract We extend the theoretical framework used to describe the T-cc state as a molecular state of D* D and make predictions for the D* D* and D-s(*) D) systems, finding that they lead to bound states only in the J(P) = 1+ channel. Using input needed to describe the T-cc state, basically one parameter to regularize the loops of the Bethe-Salpeter equation, we find bound states with bindings of the order of MeVand similar widths for the D*D* system, while the D*s D-* system develops a strong cusp around the threshold.
Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: dailianrong@zjhu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000751870200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5112
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title (down) Precision measurement of forward Z boson production in proton-proton collisions at root s=13 TeV Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 026 - 57pp
Keywords Electroweak Interaction; Forward Physics; Hadron-Hadron Scattering; Particle and Resonance Production
Abstract A precision measurement of the Z boson production cross-section at root s = 13 TeV in the forward region is presented, using pp collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb(-1). The production cross-section is measured using Z -> mu(+)mu(-) events within the fiducial region defined as pseudorapidity 2.0 < eta < 4.5 and transverse momentum p(T) > 20 GeV/c for both muons and dimuon invariant mass 60 < M-mu μ< 120 GeV/c(2). The integrated cross-section is determined to be sigma(Z -> mu(+)mu(-)) = 196.4 +/- 0.2 +/- 1.6 +/- 3.9 pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
Address [de Souza Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: hang.yin@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000825333400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5299
Permanent link to this record