toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ahyoune, S. et al; Gimeno, B.; Reina-Valero, J. url  doi
openurl 
  Title (up) A Proposal for a Low-Frequency Axion Search in the 1-2 μeV Range and Below with the BabyIAXO Magnet Type Journal Article
  Year 2023 Publication Annalen der Physik Abbreviated Journal Ann. Phys.  
  Volume 535 Issue 12 Pages 2300326 - 23pp  
  Keywords axions; dark matter; dark photons; haloscopes; IAXO  
  Abstract In the near future BabyIAXO will be the most powerful axion helioscope, relying on a custom-made magnet of two bores of 70 cm diameter and 10 m long, with a total available magnetic volume of more than 7 m(3). In this document, it proposes and describe the implementation of low-frequency axion haloscope setups suitable for operation inside the BabyIAXO magnet. The RADES proposal has a potential sensitivity to the axion-photon coupling g(alpha gamma) down to values corresponding to the KSVZ model, in the (currently unexplored) mass range between 1 and 2 μeV, after a total effective exposure of 440 days. This mass range is covered by the use of four differently dimensioned 5-meter-long cavities, equipped with a tuning mechanism based on inner turning plates. A setup like the one proposed will also allow an exploration of the same mass range for hidden photons coupled to photons. An additional complementary apparatus is proposed using LC circuits and exploring the low energy range (approximate to 10(-4)-10(-1)mu eV). The setup includes a cryostat and cooling system to cool down the BabyIAXO bore down to about 5 K, as well as an appropriate low-noise signal amplification and detection chain.  
  Address [Ahyoune, Saiyd; Cuendis, Sergio Arguedas; Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, Barcelona 08028, Spain, Email: cogollos@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001095932700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5833  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A. url  doi
openurl 
  Title (up) A quantum walk simulation of extra dimensions with warped geometry Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 12 Issue 1 Pages 1926 - 12pp  
  Keywords  
  Abstract We investigate the properties of a quantum walk which can simulate the behavior of a spin 1/2 particle in a model with an ordinary spatial dimension, and one extra dimension with warped geometry between two branes. Such a setup constitutes a 1+ 1 dimensional version of the Randall-Sundrum model, which plays an important role in high energy physics. In the continuum spacetime limit, the quantum walk reproduces the Dirac equation corresponding to the model, which allows to anticipate some of the properties that can be reproduced by the quantum walk. In particular, we observe that the probability distribution becomes, at large time steps, concentrated near the “low energy” brane, and can be approximated as the lowest eigenstate of the continuum Hamiltonian that is compatible with the symmetries of the model. In this way, we obtain a localization effect whose strength is controlled by a warp coefficient. In other words, here localization arises from the geometry of the model, at variance with the usual effect that is originated from random irregularities, as in Anderson localization. In summary, we establish an interesting correspondence between a high energy physics model and localization in quantum walks.  
  Address [Angles-Castillo, Andreu] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: andreu.angles@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000751472600024 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5107  
Permanent link to this record
 

 
Author Gonzalez, P. url  doi
openurl 
  Title (up) A quark model study of strong decays of X(3915) Type Journal Article
  Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 44 Issue 7 Pages 075004 - 13pp  
  Keywords quark; meson; potential  
  Abstract Strong decays of X(3915) are analyzed from two quark model descriptions of X(3915), a conventional one in terms of the Cornell potential and an unconventional one from a generalized screened potential. We conclude that the experimental suppression of the OZI allowed decay X(3915) -> D (D) over bar might be explained in both cases due to the momentum dependence of the decay amplitude. However, the experimental significance of the OZI forbidden decay X(3915) -> omega J/psi could favor an unconventional description.  
  Address [Gonzalez, P.] Univ Valencia, Dept Fis Teor, CSIC, IFIC, E-46100 Valencia, Spain, Email: pedro.gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402890800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3158  
Permanent link to this record
 

 
Author del Aguila, F.; Aparici, A.; Bhattacharya, S.; Santamaria, A.; Wudka, J. url  doi
openurl 
  Title (up) A realistic model of neutrino masses with a large neutrinoless double beta decay rate Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 133 - 30pp  
  Keywords Neutrino Physics; Higgs Physics; Beyond Standard Model  
  Abstract The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta (0 nu beta beta) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general 0 nu beta beta decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to 0 nu beta beta decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop expression we derive exactly. We also discuss the connection of this model to others that have appeared in the literature, and remark on the significant differences that result from various choices of quantum number assignments and symmetry assumptions. In this type of models lepton flavor violating rates are also preferred to be relatively large, at the reach of foreseen experiments. Interestingly enough, in our model this stands for a large third mixing angle, sin(2) theta(13) greater than or similar to 0.008, when μ-> eee is required to lie below its present experimental limit.  
  Address [del Aguila, Francisco] Univ Granada, CAFPE, E-18071 Granada, Spain, Email: faguila@ugr.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305238600053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1092  
Permanent link to this record
 

 
Author Fernandez Casani, A.; Orduña, J.M.; Sanchez, J.; Gonzalez de la Hoz, S. doi  openurl
  Title (up) A Reliable Large Distributed Object Store Based Platform for Collecting Event Metadata Type Journal Article
  Year 2021 Publication Journal of Grid Computing Abbreviated Journal J. Grid Comput.  
  Volume 19 Issue 3 Pages 39 - 19pp  
  Keywords Grid computing; Hadoop file system; Object-Based storage  
  Abstract The Large Hadron Collider (LHC) is about to enter its third run at unprecedented energies. The experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousands of physics users. The ATLAS EventIndex project, currently running in production, builds a complete catalogue of particle collisions, or events, for the ATLAS experiment at the LHC. The distributed nature of the experiment data model is exploited by running jobs at over one hundred Grid data centers worldwide. Millions of files with petabytes of data are indexed, extracting a small quantity of metadata per event, that is conveyed with a data collection system in real time to a central Hadoop instance at CERN. After a successful first implementation based on a messaging system, some issues suggested performance bottlenecks for the challenging higher rates in next runs of the experiment. In this work we characterize the weaknesses of the previous messaging system, regarding complexity, scalability, performance and resource consumption. A new approach based on an object-based storage method was designed and implemented, taking into account the lessons learned and leveraging the ATLAS experience with this kind of systems. We present the experiment that we run during three months in the real production scenario worldwide, in order to evaluate the messaging and object store approaches. The results of the experiment show that the new object-based storage method can efficiently support large-scale data collection for big data environments like the next runs of the ATLAS experiment at the LHC.  
  Address [Fernandez Casani, Alvaro; Sanchez, Javier; Gonzalez de la Hoz, Santiago] Univ Valencia, Inst Fis Corpuscular IFIC, Burjassot, Spain, Email: alvaro.fernandez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-7873 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000692413100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4953  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva