Becchetti, M., Bonciani, R., Cieri, L., Coro, F., & Ripani, F. (2024). Full top-quark mass dependence in diphoton production at NNLO in QCD. Phys. Lett. B, 848, 138362–7pp.
Abstract: In this paper we consider the diphoton production in hadronic collisions at the next-to-next-to-leading order (NNLO) in perturbative QCD, taking into account for the first time the full top quark mass dependence up to two loops (full NNLO). We show selected numerical distributions, highlighting the kinematic regions where the massive corrections are more significant. We make use of the recently computed two-loop massive amplitudes for diphoton production in the quark annihilation channel. The remaining massive contributions at NNLO are also considered, and we comment on the weight of the different types of contributions to the full and complete result.
|
Centelles Chulia, S., Srivastava, R., & Valle, J. W. F. (2017). Generalized bottom-tau unification, neutrino oscillations and dark matter: Predictions from a lepton quarticity flavor approach. Phys. Lett. B, 773, 26–33.
Abstract: We propose an A(4) extension of the Standard Model with a Lepton Quarticity symmetry correlating dark matter stability with the Dirac nature of neutrinos. The flavor symmetry predicts (i) a generalized bottom-tau mass relation involving all families, (ii) small neutrino masses are induced a la seesaw, (iii) CP must be significantly violated in neutrino oscillations, (iv) the atmospheric angle theta(23) lies in the second octant, and (v) only the normal neutrino mass ordering is realized.
|
Chen, P., Ding, G. J., Gonzalez-Canales, F., & Valle, J. W. F. (2016). Generalized mu-tau reflection symmetry and leptonic CP violation. Phys. Lett. B, 753, 644–652.
Abstract: We propose a generalized mu-tau reflection symmetry to constrain the lepton flavor mixing parameters. We obtain a new correlation between the atmospheric mixing angle theta(23) and the “Dirac” CP violation phase delta(CP). Only in a specific limit our proposed CP transformation reduces to standard mu-tau reflection, for which theta(23) and delta(CP) are both maximal. The “Majorana” phases are predicted to lie at their CP-conserving values with important implications for the neutrinoless double beta decay rates. We also study the phenomenological implications of our scheme for present and future neutrino oscillation experiments including T2K, NO nu A and DUNE.
|
Bejarano, C., Delhom, A., Jimenez-Cano, A., Olmo, G. J., & Rubiera-Garcia, D. (2020). Geometric inequivalence of metric and Palatini formulations of General Relativity. Phys. Lett. B, 802, 135275–4pp.
Abstract: Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta μnu R alpha beta μnu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.
|
Rinaldi, M. (2017). GPDs at non-zero skewness in ADS/QCD model. Phys. Lett. B, 771, 563–567.
Abstract: We study Generalized Parton Distribution functions (GPDs) usually measured in hard exclusive processes and encoding information on the three dimensional partonic structure of hadrons and their spin decomposition, for non-zeroskewness within the AdS/QCD formalism. To this aim the canonical scheme to calculate GPDs at zero skewness has been properly generalized. Furthermore, we show that the latter quantities, in this non-forwardregime, are sensitive to non-trivialdetails of the hadronic light front wave function, such as a kind of parton correlations usually not accessible in studies of form factors and GPDs at zero skewness.
|