toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title (up) Angular Analysis of the B+ -> K*(+)mu(+) mu(-) Decay Type Journal Article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 126 Issue 16 Pages 161802 - 11pp  
  Keywords  
  Abstract We present an angular analysis of the B+ -> K*(+)(-> K-S(0)pi(+))mu(+) mu(-) decay using 9 fb(-1) of pp collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from standard model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner B-0 -> K*(0)mu(+)mu(-) decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000652829600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4841  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title (up) Angular analysis of the rare decay B-s(0) -> phi mu(+)mu(-) Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 043 - 45pp  
  Keywords B physics; FCNC Interaction; Flavor physics; Hadron-Hadron scattering (experiments); Rare decay  
  Abstract An angular analysis of the rare decay B-s(0) -> phi mu(+)mu(-) is presented, using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13TeV, corresponding to an integrated luminosity of 8.4 fb(-1). The observables describing the angular distributions of the decay B-s(0) -> phi mu(+)mu(-) are determined in regions of q(2), the square of the dimuon invariant mass. The results are consistent with Standard Model predictions.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: marcel.materok@rwth-aachen.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000716428600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5018  
Permanent link to this record
 

 
Author Wilson, J.N. et al; Algora, A. doi  openurl
  Title (up) Angular momentum generation in nuclear fission Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 590 Issue 7847 Pages 566-570  
  Keywords  
  Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.  
  Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621583600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4717  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; de Andres, D.; Delhom, A. url  doi
openurl 
  Title (up) Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity Type Journal Article
  Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 37 Issue 22 Pages 225013 - 25pp  
  Keywords alternative theories of gravity; metric-affine gravity; anisotropic solutions  
  Abstract Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.  
  Address [Jimenez, Jose Beltran] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000580878200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4576  
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V. url  doi
openurl 
  Title (up) Anomaly Awareness Type Journal Article
  Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue 2 Pages 053 - 24pp  
  Keywords  
  Abstract We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.  
  Address [Khosa, Charanjit K.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, England  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001048488200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5610  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva