LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., et al. (2016). First study of the CP-violating phase and decay-width difference in B-s(0) -> psi(2S)phi decays. Phys. Lett. B, 762, 253–262.
Abstract: A time-dependent angular analysis of B-s(0) -> psi(2S)phi decays is performed using data recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0fb(-1) collected during Run 1 of the LHC. The CP-violating phase and decay-width difference of the B-s(0) system are measured to be phi(s)=0.23(-0.28)(+0.29)+/- 0.02rad and Delta Gamma(s)=0.066(-0.044)(+0.041)+/- 0.007ps(-1), respectively, where the first uncertainty is statistical and the second systematic. This is the first time that phi s and Delta Gamma s have been measured in a decay containing the psi(2S) resonance.
|
de Anda, F. J., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Flavour and CP predictions from orbifold compactification. Phys. Lett. B, 801, 135195–9pp.
Abstract: We propose a theory for fermion masses and mixings in which an A(4) family symmetry arises naturally from a six-dimensional spacetime after orbifold compactification. The flavour symmetry leads to the successful “golden” quark-lepton unification formula. The model reproduces oscillation parameters with good precision, giving sharp predictions for the CP violating phases of quarks and leptons, in particular delta(l) similar or equal to+268 degrees. The effective neutrinoless double-beta decay mass parameter is also sharply predicted as < m(beta beta)> similar or equal to 2.65 meV.
|
Bonilla, C., Lamprea, J. M., Peinado, E., & Valle, J. W. F. (2018). Flavour-symmetric type-II Dirac neutrino seesaw mechanism. Phys. Lett. B, 779, 257–261.
Abstract: We propose a Standard Model extension with underlying A(4) flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the “golden” flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit[ 1] we derive restrictions on the oscillation parameters, such as a correlation between delta(CP) and m(nu lightest).
|
Yamagata-Sekihara, J., Garcia-Recio, C., Nieves, J., Salcedo, L. L., & Tolos, L. (2016). Formation spectra of charmed meson-nucleus systems using an antiproton beam. Phys. Lett. B, 754, 26–32.
Abstract: We investigate the structure and formation of charmed meson--nucleus systems, with the aim of understanding the charmed meson-nucleon interactions and the properties of the charmed mesons in the nuclear medium. The (D) over bar mesic nuclei are of special interest, since they have tiny decay widths due to the absence of strong decays for the (D) over barN pair. Employing an effective model for the (D) over barN and DN interactions and solving the Klein-Gordon equation for (D) over bar and D in finite nuclei, we find that the D0-11B system has 1s and 2p mesic nuclear states and that the D0-11B system binds in a 1s state. In view of the forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC upgrade, we calculate the formation spectra of the [(D) over bar B--11] and [D-0-B-11] mesic nuclei for an antiproton beam on a C-12 target. Our results suggest that it is possible to observe the 2p D- mesic nuclear state with an appropriate experimental setup.
|
Pallis, C., & Shafi, Q. (2014). From hybrid to quadratic inflation with high-scale supersymmetry breaking. Phys. Lett. B, 736, 261–266.
Abstract: Motivated by the reported discovery of inflationary gravity waves by the BICEP2 experiment, we propose an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. The new model yields a tensor-to-scalar ratio r similar or equal to 0.14 and scalar spectral index n(s) similar or equal to 0.964, corresponding to quadratic (chaotic) inflation. The important new ingredients are the high-scale, (1.6-10) . 10(13) GeV, soft supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the Kahler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the breaking of a gauge symmetry at (1.2-7.1) . 10(16) GeV, comparable to the grand-unification scale.
|