toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 482 Issue 1 Pages 184-193  
  Keywords acceleration of particles; neutrinos; astroparticle physics; radio continuum: transients; methods: data analysis  
  Abstract In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called fast radio bursts (FRBs) is still a mystery, despite the growing observational efforts made by various multiwavelength and multimessenger facilities. To date, many models have been proposed to explain FRBs, but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, we assess whether hadronic processes may occur in the vicinity of the FRB source. If they do, FRBs may contribute to the high-energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures was carried out using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, that are spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs were selected and no coincident neutrino candidate was observed. Upper limits on the per-burst neutrino fluence were derived using a power-law spectrum, dN/DE nu proportional to E-nu(-gamma), for the incoming neutrino flux, assuming spectral indexes gamma = 1.0, 2.0, 2.5. Finally, the neutrino energy was constrained by computing the total energy radiated in neutrinos, assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released were derived from the associated null results.  
  Address [Turpin, D.] Chinese Acad Sci, Natl Astron Observ, Key Lab Space Astron & Technol, Beijing 100101, Peoples R China, Email: dornic@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454575300014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3860  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) The search for neutrinos from TXS 0506+056 with the ANTARES telescope Type Journal Article
  Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 863 Issue 2 Pages L30 - 6pp  
  Keywords astroparticle physics; elementary particles; galaxies: active  
  Abstract The results of three different searches for neutrino candidates, associated with the IceCube-170922A event or from the direction of TXS 0506+056, by the ANTARES neutrino telescope, are presented. The first search refers to the online follow-up of the IceCube alert; the second is based on the standard time-integrated method employed by the Collaboration to search for point-like neutrino sources; the third uses information from the IceCube time-dependent analysis that reported bursting activity centered on 2014 December 13, as input for an ANTARES time-dependent analysis. The online follow-up and the time-dependent analysis yield no events related to the source. The time-integrated study performed over a period from 2007 to 2017 fits 1.03 signal events, which corresponds to a p-value of 3.4% (not considering trial factors). Only for two other astrophysical objects in our candidate list has a smaller p-value been found. When considering that 107 sources have been investigated, the post-trial p-value for TXS 0506+056 corresponds to 87%.  
  Address [Albert, A.; Drouhin, D.; Ruiz, T. Gregoire; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokesperson@in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442002100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3697  
Permanent link to this record
 

 
Author ANTARES Collaboration (Bhandari, S. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up Type Journal Article
  Year 2018 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 475 Issue 2 Pages 1427-1446  
  Keywords radiation mechanisms: general; methods: data analysis; methods: observational; surveys; intergalactic medium; radio continuum: general  
  Abstract We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 +/- 0.3 pc cm(-3)) detected to date. Three of the FRBs have high dispersion measures (DM > 1500 pc cm(-3)), favouring a scenario where the DMis dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences > 2 Jy ms is alpha = – 2.2(-1.2)(+0.6) and still consistent with a Euclidean distribution (alpha = -3/2). We also find that the all-sky rate is 1.7(-0.9)(+1.5) x 10(3)FRBs/(4 pi sr)/day above similar to 2 Jy ms and there is currently no strong evidence for a latitude- dependent FRB sky rate.  
  Address [Bhandari, S.; Keane, E. F.; Barr, E. D.; Jameson, A.; Petroff, E.; Bailes, M.; Flynn, C.; Jankowski, F.; Krishnan, V. Venkatraman; Morello, V.; van Straten, W.; Andreoni, I.; Cooke, J.; Pritchard, T.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Mail H30,POB 218, Hawthorn, Vic 3122, Australia, Email: shivanibhandari58@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427345900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3518  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) Time calibration of the ANTARES neutrino telescope Type Journal Article
  Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 34 Issue 7 Pages 539-549  
  Keywords Time calibration; Neutrino telescopes; ANTARES  
  Abstract The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of similar to 1 ns. The methods developed to attain this level of precision are described.  
  Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia 46071, Spain, Email: zornoza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287955500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 560  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope Type Journal Article
  Year 2016 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 78 Issue Pages 43-51  
  Keywords Time calibration; Neutrino Telescopes; ANTARES; Atmospheric muon tracks  
  Abstract The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of similar to 10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.  
  Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: javier.barrios@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374612500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2641  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva