|   | 
Details
   web
Records
Author Garcia, A.R.; Mendoza, E.; Cano-Ott, D.; Nolte, R.; Martinez, T.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.
Title (down) New physics model in GEANT4 for the simulation of neutron interactions with organic scintillation detectors Type Journal Article
Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 868 Issue Pages 73-81
Keywords Organic scintillator; Neutron detectors; GEANT4; BC501A; NE213; EJ301
Abstract The accurate determination of the response function of organic scintillation neutron detectors complements their experimental characterization. Monte Carlo simulations with GEANT4 can reduce the effort and cost implied, especially for complex detection systems for which the characterization is more challenging. Previous studies have reported on the inaccuracy of GEANT4 in the calculation of the neutron response of organic scintillation detectors above 6 MeV, due to an incomplete description of the neutron-induced alpha production reactions on carbon. We have improved GEANT4 in this direction by incorporating models and data from NRESP, an excellent Monte Carlo simulation tool developed at the Physikalisch-Technische Bundesanstalt (PTB), Germany, for the specific purpose of calculating the neutron response function of organic scintillation detectors. The results have been verified against simulations with NRESP and validated against Time-Of-Flight measurements with an NE213 detector at PTB. This work has potential applications beyond organic scintillation detectors, to other types of detectors where reactions induced by fast neutrons on carbon require an accurate description.
Address [Garcia, A. R.; Mendoza, E.; Cano-Ott, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: daniel.cano@ciemat.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000408406700012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3250
Permanent link to this record
 

 
Author Super-Kamiokande Collaboration (Abe, K. et al); Molina Sedgwick, S.
Title (down) Neutron tagging following atmospheric neutrino events in a water Cherenkov detector Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue 10 Pages P10029 - 41pp
Keywords Particle identification methods; Cherenkov detectors; Neutrino detectors; Large detector systems for particle and astroparticle physics
Abstract We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 μs.
Address [Abe, K.; Haga, Y.; Hayato, Y.; Hiraide, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kataoka, Y.; Kato, Y.; Kishimoto, Y.; Miki, S.; Mine, S.; Miura, M.; Mochizuki, T.; Moriyama, S.; Nagao, Y.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okada, T.; Okamoto, K.; Orii, A.; Sato, K.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Takemoto, Y.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Ueno, K.; Watanabe, S.; Yano, T.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu, Akita 5061205, Japan, Email: hayato@icrr.u-tokyo.ac.jp
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000898723700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5441
Permanent link to this record
 

 
Author Mendoza, E.; Alcayne, V.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A.P.; Sanchez-Caballero, A.; Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Calvino, F.; Guerrero, C.
Title (down) Neutron capture measurements with high efficiency detectors and the Pulse Height Weighting Technique Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1047 Issue Pages 167894 - 16pp
Keywords Neutron capture; Total energy detector; Pulse height weighting technique; 7-ray cascades
Abstract Neutron capture cross section measurements in time-of-flight facilities are usually performed by detecting the prompt 7-rays emitted in the capture reactions. One of the difficulties to be addressed in these measurements is that the emitted 7-rays may change with the neutron energy, and therefore also the detection efficiency. To deal with this situation, many measurements use the so called Total Energy Detection (TED) technique, usually in combination with the Pulse Height Weighting Technique (PHWT). With it, it is sought that the detection efficiency depends only on the total energy of the 7-ray cascade, which does not vary much with the neutron energy. This technique was developed in the 1960s and has been used in many neutron capture experiments to date. One of the requirements of the technique is that 7-ray detectors have a low efficiency. This has meant that the PHWT has been used with experimental setups with low detection efficiencies. However, this condition does not have to be fulfilled by the experimental system as a whole. The main goal of this work is to show that it is possible to measure with a high efficiency detection system that uses the PHWT, and how to analyze the measured data.
Address [Mendoza, E.; Alcayne, V; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Perez de Rada, A.; Sanchez-Caballero, A.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000908431800002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5468
Permanent link to this record
 

 
Author Nygren, D.R.; Jones, B.J.P.; Lopez-March, N.; Mei, Y.; Psihas, F.; Renner, J.
Title (down) Neutrinoless double beta decay with 82SeF6 and direct ion imaging Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P03015 - 23pp
Keywords Charge transport and multiplication in gas; Gaseous detectors; Ion identification systems; Ionization and excitation processes
Abstract We present a new neutrinoless double beta decay concept: the high pressure selenium hexafluoride gas time projection chamber. A promising new detection technique is outlined which combines techniques pioneered in high pressure xenon gas, such as topological discrimination, with the high Q-value afforded by the double beta decay isotope Se-82. The lack of free electrons in SeF6 mandates the use of an ion TPC. The microphysics of ion production and drift, which have many nuances, are explored. Background estimates are presented, suggesting that such a detector may achieve background indices of better than 1 count per ton per year in the region of interest at the 100 kg scale, and still better at the ton-scale.
Address [Nygren, D. R.; Jones, B. J. P.; Lopez-March, N.; Psihas, F.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: ben.jones@uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000428146300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3541
Permanent link to this record
 

 
Author Agarwalla, S.K.; Blennow, M.; Fernandez-Martinez, E.; Mena, O.
Title (down) Neutrino probes of the nature of light dark matter Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 004 - 19pp
Keywords dark matter experiments; neutrino detectors
Abstract Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.
Address [Agarwalla, Sanjib Kumar; Mena, Olga] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000296767000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 858
Permanent link to this record