toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. doi  openurl
  Title (down) The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages P01003 - 16pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Particle detectors  
  Abstract Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.  
  Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291345600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 646  
Permanent link to this record
 

 
Author Rasco, B.C.; Brewer, N.T.; Yokoyama, R.; Grzywacz, R.; Rykaczewski, K.P.; Tolosa-Delgado, A.; Agramunt, J.; Tain, J.L.; Algora, A.; Hall, O.; Griffin, C.; Davinson, T.; Phong, V.H.; Liu, J.; Nishimura, S.; Kiss, G.G.; Nepal, N.; Estrade, A. url  doi
openurl 
  Title (down) The ORNL analysis technique for extracting beta-delayed multi-neutron branching ratios with BRIKEN Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 911 Issue Pages 79-86  
  Keywords Neutron detectors; Multi-neutron emission data analysis  
  Abstract Many choices are available in order to evaluate large radioactive decay networks. There are many parameters that influence the calculated beta-decay delayed single and multi-neutron emission branching fractions. We describe assumptions about the decay model, background, and other parameters and their influence on beta-decay delayed multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining beta-delayed multi-neutron branching ratios in beta-neutron precursors produced by means of heavy-ion fragmentation is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in coincidence with an ion-implant and beta trigger. The technique allows one to extract beta-delayed multi-neutron decay branching ratios measured with the He-3 BRIKEN neutron counter. As an example, two analyses of the beta-neutron emitter Cu-77 based on different a priori assumptions are presented along with comparisons to literature values.  
  Address [Rasco, B. C.; Brewer, N. T.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA, Email: brasco@utk.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450880200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3813  
Permanent link to this record
 

 
Author Wurm, M. et al; Mena, O. url  doi
openurl 
  Title (down) The next-generation liquid-scintillator neutrino observatory LENA Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 35 Issue 11 Pages 685-732  
  Keywords Neutrino detectors; Liquid-scintillator detectors; Low-energy neutrinos; Proton decay; Longbaseline neutrino beams  
  Abstract As part of the European LAGUNA design study on a next-generation neutrino detector, we propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a multipurpose neutrino observatory. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. Low energy threshold, good energy resolution and efficient background discrimination are inherent to the liquid-scintillator technique. A target mass of 50 kt will offer a substantial increase in detection sensitivity. At low energies, the variety of detection channels available in liquid scintillator will allow for an energy and flavor-resolved analysis of the neutrino burst emitted by a galactic Supernova. Due to target mass and background conditions, LENA will also be sensitive to the faint signal of the Diffuse Supernova Neutrino Background. Solar metallicity, time-variation in the solar neutrino flux and deviations from MSW-LMA survival probabilities can be investigated based on unprecedented statistics. Low background conditions allow to search for dark matter by observing rare annihilation neutrinos. The large number of events expected for geoneutrinos will give valuable information on the abundances of Uranium and Thorium and their relative ratio in the Earth's crust and mantle. Reactor neutrinos enable a high-precision measurement of solar mixing parameters. A strong radioactive or pion decay-at-rest neutrino source can be placed close to the detector to investigate neutrino oscillations for short distances and sub-MeV to MeV energies. At high energies, LENA will provide a new lifetime limit for the SUSY-favored proton decay mode into kaon and antineutrino, surpassing current experimental limits by about one order of magnitude. Recent studies have demonstrated that a reconstruction of momentum and energy of GeV particles is well feasible in liquid scintillator. Monte Carlo studies on the reconstruction of the complex event topologies found for neutrino interactions at multi-GeV energies have shown promising results. If this is confirmed. LENA might serve as far detector in a long-baseline neutrino oscillation experiment currently investigated in LAGUNA-LBNO.  
  Address [Wurm, Michael; Bick, Daniel; Hagner, Caren; Lorenz, Sebastian] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: michael.wurm@desy.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000304787800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1054  
Permanent link to this record
 

 
Author NEXT Collaboration (Monrabal, F. et al); Laing, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Felkai, R.; Martinez, A.; Musti, M.; Querol, M.; Rodriguez, J.; Simon, A.; Torrent, J.; Botas, A.; Diaz, J.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Romo-Luque, C.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title (down) The NEXT White (NEW) detector Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P12010 - 38pp  
  Keywords Double-beta decay detectors; Particle tracking detectors; Scintillators; scintillation and light emission processes (solid gas and liquid scintillators); Time projection chambers  
  Abstract Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.  
  Address [Ouero, M.; Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: monrabal18@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452463500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3833  
Permanent link to this record
 

 
Author LAGUNA-LBNO Collaboration (Agarwalla, S.K., et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title (down) The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 094 - 38pp  
  Keywords Oscillation; Neutrino Detectors and Telescopes; CP violation  
  Abstract The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from delta(CP) and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5 sigma C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has similar to 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract delta(CP) from the data, the first LBNO phase can convincingly give evidence for CPV on the 3 sigma C.L. using today's knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.  
  Address [Banerjee, D.; Bay, F.; Cantini, C.; Crivelli, P.; Di Luise, S.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Nguyen, K.; Nikolics, K.; Periale, L.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Sgalaberna, D.; Viant, T.; Wu, S.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland, Email: andre.rubbia@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000337086700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1821  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva