toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baron, R.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; McNeile, C.; Michael, C.; Montvay, I.; Palao, D.; Pallante, E.; Pene, O.; Urbach, C.; Wagner, M.; Wenger, U. url  doi
openurl 
  Title (up) Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 111 - 31pp  
  Keywords Lattice QCD; Chiral Lagrangians  
  Abstract  
  Address [Deuzeman, A.; Pallante, E.; Urbach, C.] Univ Groningen, Ctr Theoret Phys, NL-9747 AG Groningen, Netherlands, Email: e.pallante@rug.nl  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279630800058 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 415  
Permanent link to this record
 

 
Author Molina, R.; Ruiz de Elvira, J. url  doi
openurl 
  Title (up) Light- and strange-quark mass dependence of the rho(770) meson revisited Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 017 - 74pp  
  Keywords Chiral Lagrangians; Lattice QCD  
  Abstract Recent lattice data on pi pi -scattering phase shifts in the vector-isovector channel, pseudoscalar meson masses and decay constants for strange-quark masses smaller or equal to the physical value allow us to study the strangeness dependence of these observables for the first time. We perform a global analysis on two kind of lattice trajectories depending on whether the sum of quark masses or the strange-quark mass is kept fixed to the physical point. The quark mass dependence of these observables is extracted from unitarized coupled-channel one-loop Chiral Perturbation Theory. This analysis guides new predictions on the rho (770) meson properties over trajectories where the strange-quark mass is lighter than the physical mass, as well as on the SU(3) symmetric line. As a result, the light- and strange-quark mass dependence of the rho (770) meson parameters are discussed and precise values of the Low Energy Constants present in unitarized one-loop Chiral Perturbation Theory are given. Finally, the current discrepancy between two- and three-flavor lattice results for the rho (770) meson is studied.  
  Address [Molina, R.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: raqumoli@ucm.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000591048300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4615  
Permanent link to this record
 

 
Author Pich, A.; Rosell, I.; Sanz-Cillero, J.J. url  doi
openurl 
  Title (up) Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 157 - 35pp  
  Keywords Higgs Physics; Beyond Standard Model; Chiral Lagrangians; Technicolor and Composite Models  
  Abstract Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R), we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W+W- and and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.  
  Address [Pich, A.; Rosell, I.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: antonio.pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346240600006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2059  
Permanent link to this record
 

 
Author Pich, A.; Rosell, I.; Sanz-Cillero, J.J. url  doi
openurl 
  Title (up) One-loop calculation of the oblique S parameter in higgsless electroweak models Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 106 - 34pp  
  Keywords Higgs Physics; Beyond Standard Model; Chiral Lagrangians; Technicolor and Composite Models  
  Abstract We present a one-loop calculation of the oblique S parameter within Higgsless models of electroweak symmetry breaking and analyze the phenomenological implications of the available electroweak precision data. We use the most general effective Lagrangian with at most two derivatives, implementing the chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R) with Goldstones, gauge bosons and one multiplet of vector and axial-vector massive resonance states. Using the dispersive representation of Peskin and Takeuchi and imposing the short-distance constraints dictated by the operator product expansion, we obtain S at the NLO in terms of a few resonance parameters. In asymptotically-free gauge theories, the final result only depends on the vector-resonance mass and requires M-V > 1.8TeV (3.8TeV) to satisfy the experimental limits at the 3 sigma (1 sigma) level; the axial state is always heavier, we obtain M-A > 2.5TeV (6.6TeV) at 3 sigma (1 sigma). In strongly-coupled models, such as walking or conformal technicolour, where the second Weinberg sum rule does not apply, the vector and axial couplings are not determined by the short-distance constraints; but one can still derive a lower bound on S, provided the hierarchy M-V < M-A remains valid. Even in this less constrained situation, we find that in order to satisfy the experimental limits at 3 sigma one needs M-V,M-A > 1.8TeV.  
  Address [Pich, A.; Rosell, I.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: antonio.pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309883200063 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1217  
Permanent link to this record
 

 
Author Alarcon, J.M.; Hiller Blin, A.N.; Vicente Vacas, M.J.; Weiss, C. url  doi
openurl 
  Title (up) Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis Type Journal Article
  Year 2017 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 964 Issue Pages 18-54  
  Keywords Electromagnetic form factors; Chiral lagrangians; Dispersion relations; Hyperons; Charge distribution  
  Abstract The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.  
  Address [Alarcon, J. M.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: alarcon@jlab.org  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404199900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3188  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva