toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Centelles Chulia, S.; Ma, E.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Dirac neutrinos and dark matter stability from lepton quarticity Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 767 Issue Pages 209-213  
  Keywords  
  Abstract We propose to relate dark matter stability to the possible Dirac nature of neutrinos. The idea is illustrated in a simple scheme where small Dirac neutrino masses arise from a type-I seesaw mechanism as a result of a Z(4) discrete lepton number symmetry. The latter implies the existence of a viable WIMP dark matter candidate, whose stability arises from the same symmetry which ensures the Diracness of neutrinos.  
  Address [Centelles Chulia, Salvador; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: salcen@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397861700032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3024  
Permanent link to this record
 

 
Author Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H. url  doi
openurl 
  Title (up) Do current data prefer a nonminimally coupled inflaton? Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 10 Pages 103004 - 6pp  
  Keywords  
  Abstract We examine the impact of a nonminimal coupling of the inflaton to the Ricci scalar, 1/2 xi R phi(2), on the inflationary predictions. Such a nonminimal coupling is expected to be present in the inflaton Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model governed by the potential V proportional to phi(2), using the latest combined 2015 analysis of Planck and the BICEP2/Keck Array. We find that the presence of a coupling xi is favored at a significance of 99% C.L., assuming that nature has chosen the potential V proportional to phi(2) to generate the primordial perturbations and a number of e-foldings N = 60. Within the context of the same scenario, we find that the value of xi is different from zero at the 2 sigma level. When considering the cross-correlation polarization spectra from the BICEP2/Keck Array and Planck, a value of r = 0.038(-0.030)(+0.039) is predicted in this particular nonminimally coupled scenario. Future cosmological observations may therefore test these values of r and verify or falsify the nonminimally coupled model explored here.  
  Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354979300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2237  
Permanent link to this record
 

 
Author Pandolfi, S.; Cooray, A.; Giusarma, E.; Kolb, E.W.; Melchiorri, A.; Mena, O.; Serra, P. url  doi
openurl 
  Title (up) Harrison-Zel'dovich primordial spectrum is consistent with observations Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 12 Pages 123509 - 6pp  
  Keywords  
  Abstract Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity [the Harrison-Zel'dovich (HZ) spectrum]. The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c. l. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.  
  Address [Pandolfi, Stefania] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278555900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 426  
Permanent link to this record
 

 
Author Pandolfi, S.; Giusarma, E.; Kolb, E.W.; Lattanzi, M.; Melchiorri, A.; Mena, O.; Pena, M.; Cooray, A.; Serra, P. url  doi
openurl 
  Title (up) Impact of general reionization scenarios on extraction of inflationary parameters Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 12 Pages 123527 - 10pp  
  Keywords  
  Abstract Determination of whether the Harrison-Zel'dovich spectrum for primordial scalar perturbations is consistent with observations is sensitive to assumptions about the reionization scenario. In light of this result, we revisit constraints on inflationary models using more general reionization scenarios. While the bounds on the tensor-to-scalar ratio are largely unmodified, when different reionization schemes are addressed, hybrid models are back into the inflationary game. In the general reionization picture, we reconstruct both the shape and amplitude of the inflaton potential. We discuss how relaxing the simple reionization restriction affects the reconstruction of the potential through the changes in the constraints on the spectral index, the tensor-to-scalar ratio and the running of the spectral index. We also find that the inclusion of other Cosmic Microwave Background data in addition to the Wilkinson Microwave Anisotropy probe data excludes the very flat potentials typical of models in which the inflationary evolution reaches a late-time attractor, as a consequence of the fact that the running of the spectral index is constrained to be different from zero at 99% confidence level.  
  Address [Pandolfi, Stefania; Lattanzi, Massimiliano; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286744800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 530  
Permanent link to this record
 

 
Author Gerbino, M.; Freese, K.; Vagnozzi, S.; Lattanzi, M.; Mena, O.; Giusarma, E.; Ho, S. url  doi
openurl 
  Title (up) Impact of neutrino properties on the estimation of inflationary parameters from current and future observations Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 4 Pages 043512 - 22pp  
  Keywords  
  Abstract We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the n(s)/r plane, where n(s) is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass M-i = Sigma(i)m(i) (where the index i = 1, 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom N-eff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce < 1 sigma shift of the probability contours in the n(s)/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass M-v,M-min = 0 that accompanies previous works using the degenerate hierarchy does introduce biases in the n(s)/r plane and should be replaced by M-v,M-min = 0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass M-v and over r can lead to a shift in the mean value of ns of similar to 0.3 sigma toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the n(s)/r plane are basically reproduced. Larger shifts of the contours in the n(s)/r plane (up to 0.8 sigma) arise for nonstandard values of N-eff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over M-v, could induce a shift of similar to 0.4 sigma toward lower values in the determination of ns (or a similar to 0.8 sigma shift if one marginalizes over N-eff). Comparison to specific inflationary models is shown. Imperfect knowledge of neutrino properties must be taken into account properly, given the desired precision in determining whether or not inflationary models match the future data.  
  Address [Gerbino, Martina; Freese, Katherine; Vagnozzi, Sunny] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden, Email: martina.gerbino@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427057900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3514  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva