toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gomez-Vargas, G.A.; Lopez-Fogliani, D.E.; Muñoz, C.; Perez, A.D.; Ruiz de Austri, R. url  doi
openurl 
  Title (up) Search for sharp and smooth spectral signatures of μnu SSM gravitino dark matter with Fermi- LAT Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 047 - 23pp  
  Keywords dark matter experiments; dark matter theory; gamma ray experiments  
  Abstract The μnu SSM solves the μproblem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos nu's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μnu SSM. In this work we carry out a complete analysis of the detection of μnu SSM gravitino dark matter through gamma-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μnu SSM taking into account that neutrino data must be reproduced. Then, we compare the gamma-ray fluxes predicted by the model with Fermi-LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic gamma-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 10(28) s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 x 10(25) s.  
  Address [Gomez-Vargas, German A.; Lopez-Fogliani, Daniel E.; Munoz, Carlos; Perez, Andres D.; Ruiz de Austri, Roberto] Pontificia Univ Catolica Chile, AInstituto Astrofis, Ave Vicu Mackenna 4860, Santiago, Chile, Email: ggomezv@uc.cl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405653700036 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3210  
Permanent link to this record
 

 
Author Ghosh, P.; Lara, I.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title (up) Searching for left sneutrino LSP at the LHC Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 18-19 Pages 1850110 - 62pp  
  Keywords Supersymmetry phenomenology; supersymmetric Standard Model  
  Abstract We analyze relevant signals expected at the LHC for a left sneutrino as the lightest supersymmetric particle (LSP). The discussion is carried out in the “mu from nu” supersymmetric standard model (mu nu SSM), where the presence of R-parity breaking couplings involving right-handed neutrinos solves the μproblem and reproduces neutrino data. The sneutrinos are pair produced via a virtual W, Z or gamma in the s channel. From the prompt decay of a pair of left sneutrinos LSPs of any family, a significant diphoton signal plus missing transverse energy (MET) from neutrinos can be present in the mass range 118-132 GeV, with 13 TeV center-of-mass energy and an integrated luminosity of 100 fb(-1). In addition, in the case of a pair of tau left sneutrinos LSPs, given the large value of the tau Yukawa coupling diphoton plus leptons and/or multileptons can appear. We find that the number of expected events for the multilepton signal, together with properly adopted search strategies, is sufficient to give a significant evidence for a sneutrino of mass in the range 130-310 GeV, even with the integrated luminosity of 20 fb(-1). In the case of the signal producing diphoton plus leptons, an integrated luminosity of 100 fb(-1) is needed to give a significant evidence in the mass range 95-145 GeV. Finally, we discuss briefly the presence of displaced vertices and the associated range of masses.  
  Address [Ghosh, Pradipta] Vidyasagar Coll, Dept Phys, 39 Sankar Ghose Lane, Kolkata 700006, India, Email: tphyspg@gmail.com;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000438183700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3654  
Permanent link to this record
 

 
Author Fidalgo, J.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title (up) The Higgs sector of the μnu SSM and collider physics Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 020 - 33pp  
  Keywords Higgs Physics; Supersymmetric Effective Theories; Beyond Standard Model  
  Abstract The μnu SSM is a supersymmetric standard model that accounts for light neutrino masses and solves the μproblem of the MSSM by simply using right-handed neutrino superfields. Since this mechanism breaks R-parity, a peculiar structure for the mass matrices is generated. The neutral Higgses are mixed with the right- and left-handed sneutrinos producing 8x8 neutral scalar mass matrices. We analyse the Higgs sector of the μnu SSM in detail, with special emphasis in possible signals at colliders. After studying in general the decays of the Higges, we focus on those processes that are genuine of the μnu SSM, and could serve to distinguish it form other supersymmetric models. In particular, we present viable benchmark points for LHC searches. For example, we find decays of a MSSM-like Higgs into two lightest neutralinos, with the latter decaying inside the detector leading to displaced vertices, and producing final states with 4 and 8 b-jets plus missing energy. Final states with leptons and missing energy are also found.  
  Address [Fidalgo, Javier; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor UAM, E-28049 Madrid, Spain, Email: javier.fidalgo@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296917100020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 831  
Permanent link to this record
 

 
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R. url  doi
openurl 
  Title (up) The new (g-2)(mu) and right-handed sneutrino dark matter Type Journal Article
  Year 2022 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 974 Issue Pages 115637 - 23pp  
  Keywords  
  Abstract In this paper we investigate the (g – 2)(mu) discrepancy in the context of the R-parity conserving next-to minimal supersymmetric Standard Model plus right-handed neutrinos superfields. The model has the ability to reproduce neutrino physics data and includes the interesting possibility to have the right-handed sneutrino as the lightest supersymmetric particle and a viable dark matter candidate. Since right-handed sneutrinos are singlets, no new contributions for delta a(mu) with respect to the MSSM and NMSSM are present. However, the possibility to have the right-handed sneutrino as the lightest supersymmetric particle opens new ways to escape Large Hadron Collider and direct detection constraints. In particular, we find that dark matter masses within 10 less than or similar to m((upsilon) over tildeR) less than or similar to 600 GeV are fully compatible with current experimental constraints. Remarkably, not only spectra with light sleptons are needed, but we obtain solutions with m((mu) over tilde) greater than or similar to 600 GeV in the entire dark matter mass range that could be probed by new (g – 2)(mu) data in the near future. In addition, dark matter direct detection experiments will be able to explore a sizable portion of the allowed parameter space with mvR < 300 GeV, while indirect detection experiments will be able to probe a much smaller fraction within 200 less than or similar to m((nu)over tilde>R) less than or similar to 350 GeV.  
  Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000760320700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5135  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva