|   | 
Details
   web
Records
Author Nieves, J.; Pavao, R.; Tolos, L.
Title (down) Xi(c) and Xi(b) excited states within a SU(6)(lsf) x HQSS model Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 1 Pages 22 - 12pp
Keywords
Abstract We study odd parity J = 1/2 and J = 3/2 Xi(c) resonances using a unitarized coupled-channel framework based on a SU(6)(lsf) xHQSS-extended Weinberg-Tomozawa baryon-meson interaction, while paying a special attention to the renormalization procedure. We predict a large molecular Lambda(c)(K) over bar component for the Xi(c) (2790) with a dominant 0(-) light-degree-of-freedom spin configuration. We discuss the differences between the 3/2(-) Lambda(c)(2625) and Xi(c)(2815) states, and conclude that they cannot be SU(3) siblings, whereas we predict the existence of other Xi(c)-states, one of them related to the two-pole structure of the Lambda(c)(2595). It is of particular interest a pair of J = 1/2 and J = 3/2 poles, which form a HQSS doublet and that we tentatively assign to the Xi(c)(2930) and Xi(c)(2970), respectively. Within this picture, the Xi(c)(2930) would be part of a SU(3) sextet, containing either the Omega(c)(3090) or the Omega(c)(3119), and that would be completed by the Sigma(c)(2800). Moreover, we identify a J = 1/2 sextet with the Xi(b)(6227) state and the recently discovered Sigma(b)(6097). Assuming the equal spacing rule and to complete this multiplet, we predict the existence of a J = 1/2 Omega(b) odd parity state, with a mass of 6360 MeV and that should be seen in the Xi(b) (K) over bar channel.
Address [Nieves, J.; Pavao, R.] UV, CSIC, Inst Invest Paterna, Inst Fis Corpuscular,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: tolos@ice.csic.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000514590400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4295
Permanent link to this record
 

 
Author Dias, J.M.; Yu, Q.X.; Liang, W.H.; Sun, Z.F.; Xie, J.J.; Oset, E.
Title (down) Xi(bb) and Omega(bbb) molecular states Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 6 Pages 064101 - 8pp
Keywords doubly-heavy baryons; strong interaction; molecular state
Abstract Using the vector exchange interaction in the local hidden gauge approach, which in the light quark sector generates the chiral Lagrangians and has produced realistic results for Omega(C), Xi(c), Xi(b) and the hidden charm pentaquark states, we study the meson-baryon interactions in the coupled channels that lead to the Xi(bb) and Omega(bbb) excited states of the molecular type. We obtain seven states of the Xi(bb) type with energies between and MeV, and one Omega(bbb) state at MeV.
Address [Dias, J. M.; Yu, Qi-Xin; Liang, Wei-Hong; Oset, E.] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: isengardjor@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000541533100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4432
Permanent link to this record
 

 
Author Garcilazo, H.; Valcarce, A.; Vijande, J.
Title (down) Xi(-)t quasibound state instead of Lambda Lambda nn bound state Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 2 Pages 024102 - 7pp
Keywords baryon-baryon interactions; few-body systems; Faddeev equations
Abstract The coupled Lambda Lambda nn – Xi-pnn system was studied to investigate whether the inclusion of channel coupling is able to bind the Lambda Lambda nn system. We use a separable potential three-body model of the coupled Lambda Lambda nn – Xi-pnn system and a variational four-body calculation with realistic interactions. Our results exclude the possibility of a bound state by a large margin. Instead, we found a Xi(-)t quasibound state above the Lambda Lambda nn threshold.
Address [Garcilazo, H.] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edificio 9, Mexico City 07738, DF, Mexico, Email: humberto@esfm.ipn.mx;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000509960900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4267
Permanent link to this record
 

 
Author De Romeri, V.; Majumdar, A.; Papoulias, D.K.; Srivastava, R.
Title (down) XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 028 - 34pp
Keywords dark matter detectors; dark matter simulations; supernova neutrinos; supernovas
Abstract We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.
Address [Romeri, Valentina De] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001195757300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6043
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F.
Title (down) XENON1T signal from transition neutrino magnetic moments Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 808 Issue Pages 135685 - 5pp
Keywords
Abstract The recent puzzling results of the XENONIT collaboration at few keV electronic recoils could be due to the scattering of solar neutrinos endowed with finite Majorana transition magnetic moments (TMMs). Within such general formalism, we find that the observed excess in the XENONIT data agrees well with this interpretation. The required TMM strengths lie within the limits set by current experiments, such as Borexino, specially when one takes into account a possible tritium contamination.
Address [Miranda, O. G.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571769700059 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4541
Permanent link to this record