|   | 
Details
   web
Records
Author Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 778 Issue Pages 459-463
Keywords
Abstract Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions.
Address [Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: rahulsri@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000426436700063 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3512
Permanent link to this record
 

 
Author Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. .
Title (down) Synergy between cosmological and laboratory searches in neutrino physics Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 42 Issue Pages 101333 - 36pp
Keywords Neutrinos; Cosmology; Neutrino phenomenology
Abstract The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.
Address [Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001112368600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5854
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Supernova neutrino burst detection with the Deep Underground Neutrino Experiment Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 5 Pages 423 - 26pp
Keywords
Abstract The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.
Address [Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000661101700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4859
Permanent link to this record
 

 
Author Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M.
Title (down) Sterile neutrinos with altered dispersion relations revisited Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 070 - 18pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract In this paper we investigate neutrino oscillations with altered dispersion relations in the presence of sterile neutrinos. Modified dispersion relations represent an agnostic way to parameterize new physics. Models of this type have been suggested to explain global neutrino oscillation data, including deviations from the standard three-neutrino paradigm as observed by a few experiments. We show that, unfortunately, in this type of models new tensions arise turning them incompatible with global data.
Address [Barenboim, G.; Martinez-Mirave, P.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000520538500003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4333
Permanent link to this record
 

 
Author Tortola, M.
Title (down) Status of three-neutrino oscillation parameters Type Journal Article
Year 2013 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.
Volume 61 Issue 4-5 Pages 427-440
Keywords Neutrino mass and mixing; neutrino oscillations; solar and atmospheric neutrinos; reactor and accelerator neutrinos
Abstract Here we review the current status of global fits to neutrino oscillation data within the three-flavour framework. In our analysis we include the most recent data from solar and atmospheric neutrino experiments as well as the latest results from the long-baseline accelerator neutrino experiments and the recent measurements of reactor neutrino disappearance reported by Double Chooz, Daya Bay and RENO. We present updated determinations for the two neutrino mass splittings and the three mixing angles responsible for neutrino oscillations that, for the first time, have all been measured with 1 sigma accuracies ranging from 3 to 15%. A weak sensitivity for the CP violating phase is also reported from the global analysis.
Address Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Valencia 46071, Spain, Email: mariam@ific.uv.es
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0015-8208 ISBN Medium
Area Expedition Conference
Notes WOS:000317019900005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1411
Permanent link to this record