|   | 
Details
   web
Records
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J.
Title (up) Birth of baby universes from gravitational collapse in a modified-gravity scenario Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 028 - 19pp
Keywords modified gravity; Wormholes
Abstract We consider equilibrium models of spherical boson stars in Palatini f (R) = R + CR2 gravity and study their collapse when perturbed. The Einstein-Klein-Gordon system is solved using a recently established correspondence in an Einstein frame representation. We find that, in that frame, the endpoint is a nonrotating black hole surrounded by a quasi -stationary cloud of scalar field. However, the dynamics in the f (R) frame is dramatically different. The innermost region of the collapsing object exhibits the formation of a finite -size, exponentially-expanding baby universe connected with the outer (parent) universe via a minimal area surface (a throat or umbilical cord). Our simulations indicate that this surface is at all times hidden inside a horizon, causally disconnecting the baby universe from observers above the horizon. The implications of our findings in other areas of gravitational physics are also discussed.
Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: andreu.maso@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025474200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5577
Permanent link to this record
 

 
Author Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D.
Title (up) Black hole formation from a null fluid in extended Palatini gravity Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 10 Pages 104010 - 8pp
Keywords
Abstract We study the formation and perturbation of black holes by null fluxes of neutral matter in a quadratic extension of general relativity formulated a la Palatini. Working in a spherically symmetric space-time, we obtain an exact analytical solution for the metric that extends the usual Vaidya-type solution to this type of theory. We find that the resulting space-time is formally that of a Reissner-Nordstrom black hole but with an effective charge term carrying the wrong sign in front of it. This effective charge is directly related to the luminosity function of the radiation stream. When the ingoing flux vanishes, the charge term disappears and the space-time relaxes to that of a Schwarzschild black hole. We provide two examples that illustrate the formation of a black hole from Minkowski space and the perturbation by a finite pulse of radiation of an existing Schwarzschild black hole.
Address [Martinez-Asencio, Jesus; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000310686900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1202
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title (up) Black holes in five-dimensional Palatini f(R) gravity and implications for the AdS/CFT correspondence Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 4 Pages 044011 - 8pp
Keywords
Abstract We show that theories having second-order field equations in the context of higher-dimensional modified gravity are not restricted to the family of Lovelock Lagrangians, but can also be obtained if no a priori assumption on the relation between the metric and affine structures of space-time is made (the Palatini approach). We illustrate this fact by considering the case of Palatini f(R) gravities in five dimensions. Our results provide an alternative avenue to explore new domains of the AdS/CFT correspondence without resorting to ad hoc quasitopological constructions.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.; Rubiera-Garcia, D.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000339995400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1863
Permanent link to this record
 

 
Author Makarenko, A.N.; Odintsov, S.; Olmo, G.J.
Title (up) Born-Infeld f(R) gravity Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 2 Pages 024066 - 15pp
Keywords
Abstract Motivated by the properties of matter quantum fields in curved space-times, we work out a gravity theory that combines the Born-Infeld gravity Lagrangian with an f(R) piece. To avoid ghostlike instabilities, the theory is formulated within the Palatini approach. This construction provides more freedom to address a number of important questions, such as the dynamics of the early Universe and the cosmic accelerated expansion, among others. In particular, we consider the effect that adding an f(R) = aR(2) term has on the early-time cosmology. We find that bouncing solutions are robust against these modifications of the Lagrangian whereas the solutions with loitering behavior of the original Born-Infeld theory are very sensitive to the R-2 term. In fact, these solutions are modified in such a way that a plateau in the H-2 function may arise, yielding a period of (approximately) de Sitter inflationary expansion. This inflationary behavior may be found even in a radiation-dominated universe.
Address [Makarenko, Andrey N.] Tomsk State Pedag Univ, Tomsk 634061, Russia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000341262300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1911
Permanent link to this record
 

 
Author Odintsov, S.D.; Olmo, G.J.; Rubiera-Garcia, D.
Title (up) Born-Infeld gravity and its functional extensions Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 4 Pages 044003 - 8pp
Keywords
Abstract We investigate the dynamics of a family of functional extensions of the (Eddington-inspired) Born-Infeld gravity theory, constructed with the inverse of the metric and the Ricci tensor. We provide a generic formal solution for the connection and an Einstein-like representation for the metric field equations of this family of theories. For particular cases we consider applications to the early-time cosmology and find that nonsingular universes with a cosmic bounce are very generic and robust solutions.
Address [Odintsov, Sergei D.] Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000339999700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1880
Permanent link to this record