|   | 
Details
   web
Records
Author Dias da Silva, L.F.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D.
Title (up) Photon rings as tests for alternative spherically symmetric geometries with thin accretion disks Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 8 Pages 084055 - 18pp
Keywords
Abstract The imaging by the Event Horizon Telescope (EHT) of the supermassive central objects at the heart of the M87 and Milky Way (Sgr A*) galaxies, has marked the first step into peering at the photon rings and central brightness depression that characterize the optical appearance of black holes surrounded by an accretion disk. Recently, Vagnozzi et al. [arXiv:2205.07787] used the claim by the EHT that the size of the shadow of Sgr A* can be inferred by calibrated measurements of the bright ring enclosing it, to constrain a large number of spherically symmetric space-time geometries. In this work we use this result to study some features of the first and second photon rings of a restricted pool of such geometries in thin accretion disk settings. The emission profile of the latter is described by calling upon three analytic samples belonging to the family introduced by Gralla, Lupsasca, and Marrone, in order to characterize such photon rings using the Lyapunov exponent of nearly bound orbits and discuss its correlation with the luminosity extinction rate between the first and second photon rings. We finally elaborate on the chances of using such photon rings as observational discriminators of alternative black hole geometries using very long baseline interferometry.
Address [Dias da Silva, Luis F.; Lobo, Francisco S. N.] Univ Lisbon, Inst Astrofis & Ciencias Espaco, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal, Email: fc53497@alunos.fc.ul.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001093442700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5779
Permanent link to this record
 

 
Author Lobo, F.S.N.; Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D.
Title (up) Planck scale physics and topology change through an exactly solvable model Type Journal Article
Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 731 Issue Pages 163-167
Keywords Modified gravity; Palatini formalism; Planck scale physics; Dynamical Vaidya solutions; Topology change
Abstract We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.
Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000334094500028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1757
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D.
Title (up) Semiclassical geons as solitonic black hole remnants Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 011 - 10pp
Keywords modified gravity; primordial black holes; Wormholes; quantum field theory on curved space
Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.
Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1532
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.; Rustam, A.
Title (up) Structure and stability of traversable thin-shell wormholes in Palatini f(R) gravity Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages 104012 - 11pp
Keywords
Abstract We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells in the context of Palatini f(R) gravity. Using a suitable junction formalism for these theories we find that the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation of state to be that of massless stress-energy fields, contrary to the general relativistic and metric f(R) cases. Another major difference is that the surface energy density threading the thin shell, needed in order to sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically grafting Schwarzschild space-times and show that these configurations are always linearly unstable. However, surgically joined Reissner-Nordstrom space-times allow for linearly stable, traversable thin-shell wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given by y = Q(2)/M-2, satisfies the constraint 1 < y < 9/8 (corresponding to overcharged Reissner-Nordstrom configurations having a photon sphere) and lies in a region bounded by specific curves defined in terms of the (dimensionless) radius of the shell x(0) = R/M.
Address [Lobo, Francisco S. N.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, Edificio C8,Campo Grande, P-1749016 Lisbon, Portugal, Email: fslobo@fc.ul.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587286200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4596
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J.; Vignolo, S.
Title (up) The Cauchy problem in hybrid metric-Palatini f(X)-gravity Type Journal Article
Year 2014 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.
Volume 11 Issue 5 Pages 1450042 - 12pp
Keywords Cauchy problem; modified gravity; hybrid metric-Palatini gravity
Abstract The well-formulation and the well-posedness of the Cauchy problem are discussed for hybrid metric-Palatini gravity, a recently proposed modified gravitational theory consisting of adding to the Einstein-Hilbert Lagrangian an f(R)-term constructed a la Palatini. The theory can be recast as a scalar-tensor one predicting the existence of a light long-range scalar field that evades the local Solar System tests and is able to modify galactic and cosmological dynamics, leading to the late-time cosmic acceleration. In this work, adopting generalized harmonic coordinates, we show that the initial value problem can always be well-formulated and, furthermore, can be well-posed depending on the adopted matter sources.
Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-8878 ISBN Medium
Area Expedition Conference
Notes WOS:000336527100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1813
Permanent link to this record