|   | 
Details
   web
Records
Author Mosbech, M.R.; Boehm, C.; Hannestad, S.; Mena, O.; Stadler, J.; Wong, Y.Y.Y.
Title (down) The full Boltzmann hierarchy for dark matter-massive neutrino interactions Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 066 - 31pp
Keywords cosmological perturbation theory; dark matter theory; neutrino properties; particle physics – cosmology connection
Abstract The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via u(chi) = sigma(0)/sigma(Th) (m(chi)/100GeV)(-1), is u(chi) <= 3.34 . 10(-4), arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of sigma 8 that is inferred in the context of Lambda CDM from the Planck data, leading to agreement within 1-2 sigma with weak lensing estimates of sigma 8, as those from KiDS1000. However, the presence of these interactions barely affects the value of the Hubble constant H-0.
Address [Mosbech, Markus R.; Boehm, Celine] Univ Sydney, Sch Phys, Camperdown, NSW 2006, Australia, Email: mmos6302@uni.sydney.edu.au;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400061 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4783
Permanent link to this record
 

 
Author Boubekeur, L.; Choi, K.Y.; Ruiz de Austri, R.; Vives, O.
Title (down) The degenerate gravitino scenario Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 005 - 26pp
Keywords dark matter theory; leptogenesis; supersymmetry and cosmology; cosmology of theories beyond the SM
Abstract In this work, we explore the “degenerate gravitino” scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10(-2) GeV. While for stau NLSP, temperatures of T-RH similar or equal to 4 x 10(9) GeV can be obtained even for splittings of order of tens of GeVs. This “degenerate gravitino” scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.
Address [Boubekeur, Lotfi; Vives, Oscar] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Spain, Email: lotfi.boubekeur@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000277684600028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 453
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Moline, A.; Palomares-Ruiz, S.; Vincent, A.C.
Title (down) The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 004 - 40pp
Keywords dark matter theory; intergalactic media; reionization
Abstract Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-alpha pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of similar to 100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from similar to 100 MeV.
Address [Lopez-Honorez, Laura] Vrije Univ Brussel, Theoret Natuurkunde, Pl Laan 2, B-1050 Brussels, Belgium, Email: llopezho@vub.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000389859100050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2899
Permanent link to this record
 

 
Author Bernal, N.; Forero-Romero, J.E.; Garani, R.; Palomares-Ruiz, S.
Title (down) Systematic uncertainties from halo asphericity in dark matter searches Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 004 - 30pp
Keywords dark matter theory; dark matter simulations
Abstract Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm(3). Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.
Address [Bernal, Nicolas] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01405 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000342642500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1958
Permanent link to this record
 

 
Author De Romeri, V.; Martinez-Mirave, P.; Tortola, M.
Title (down) Signatures of primordial black hole dark matter at DUNE and THEIA Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 051 - 21pp
Keywords dark matter theory; neutrino experiments; primordial black holes
Abstract Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
Address [De Romeri, Valentina] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000758221400007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5140
Permanent link to this record
 

 
Author Caputo, A.; Regis, M.; Taoso, M.
Title (down) Searching for sterile neutrino with X-ray intensity mapping Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 001 - 21pp
Keywords X-ray telescopes; dark matter experiments; dark matter theory; power spectrum
Abstract The cosmological X-ray emission associated to the possible radiative decay of sterile neutrinos is composed by a collection of lines at different energies. For a given mass, each line corresponds to a given redshift. In this work, we cross correlate such line emission with catalogs of galaxies tracing the dark matter distribution at different redshifts. We derive observational prospects by correlating the X-ray sky that will be probed by the eROSITA and Athena missions with current and near future photometric and spectroscopic galaxy surveys. A relevant and unexplored fraction of the parameter space of sterile neutrinos can be probed by this technique.
Address [Caputo, Andrea] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000528029100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4385
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Searching for solar KDAR with DUNE Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 065 - 28pp
Keywords dark matter theory; neutrino detectors
Abstract The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.
Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000758221400019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5141
Permanent link to this record
 

 
Author Gomez-Vargas, G.A.; Lopez-Fogliani, D.E.; Muñoz, C.; Perez, A.D.; Ruiz de Austri, R.
Title (down) Search for sharp and smooth spectral signatures of μnu SSM gravitino dark matter with Fermi- LAT Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 047 - 23pp
Keywords dark matter experiments; dark matter theory; gamma ray experiments
Abstract The μnu SSM solves the μproblem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos nu's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μnu SSM. In this work we carry out a complete analysis of the detection of μnu SSM gravitino dark matter through gamma-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μnu SSM taking into account that neutrino data must be reproduced. Then, we compare the gamma-ray fluxes predicted by the model with Fermi-LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic gamma-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 10(28) s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 x 10(25) s.
Address [Gomez-Vargas, German A.; Lopez-Fogliani, Daniel E.; Munoz, Carlos; Perez, Andres D.; Ruiz de Austri, Roberto] Pontificia Univ Catolica Chile, AInstituto Astrofis, Ave Vicu Mackenna 4860, Santiago, Chile, Email: ggomezv@uc.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000405653700036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3210
Permanent link to this record
 

 
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title (down) Right-handed sneutrino and gravitino multicomponent dark matter in light of neutrino detectors Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 050 - 32pp
Keywords dark matter theory; dark matter experiments; neutrino detectors
Abstract We investigate the possibility that right-handed (RH) sneutrinos and gravitinos can coexist and explain the dark matter (DM) problem. We compare extensions of the minimal supersymmetric standard model (MSSM) and the next-to-MSSM (NMSSM) adding RH neutrinos superfields, with special emphasis on the latter. If the gravitino is the lightest supersymmetric particle (LSP) and the RH sneutrino the next-to-LSP (NLSP), the heavier particle decays to the former plus left-handed (LH) neutrinos through the mixing between the scalar partners of the LH and RH neutrinos. However, the interaction is suppressed by the Planck mass, and if the LH-RH sneutrino mixing parameter is small, << O(10-2), a long-lived RH sneutrino NLSP is possible even surpassing the age of the Universe. As a byproduct, the NLSP to LSP decay produces monochromatic neutrinos in the ballpark of current and planned neutrino telescopes like Super-Kamiokande, IceCube and Antares that we use to set constraints and show prospects of detection. In the NMSSM+RHN, assuming a gluino mass parameter M3 = 3 TeV we found the following lower limits for the gravitino mass m3/2 >= 1-600 GeV and the reheating temperature TR >= 105-3 x 107 GeV, for m nu similar to R similar to 10-800 GeV. If we take M3 = 10 TeV, then the limits on TR are relaxed by one order of magnitude.
Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000975382300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5523
Permanent link to this record
 

 
Author Bringmann, T.; Donato, F.; Lineros, R.A.
Title (down) Radio data and synchrotron emission in consistent cosmic ray models Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 049 - 12pp
Keywords cosmic ray theory; dark matter theory
Abstract It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large (L greater than or similar to 15 kpc) and, even stronger, small (L less than or similar to 1 kpc) effective diffusive halo sizes. This has profound implications for, e.g., in direct dark matter searches.
Address [Bringmann, Torsten] Univ Hamburg, Inst Theoret Phys, D-22761 Hamburg, Germany, Email: torsten.bringmann@desy.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000300403300049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 938
Permanent link to this record