|   | 
Details
   web
Records
Author Kim, C.S.; Lopez-Castro, G.; Tostado, S.L.; Vicente, A.
Title (down) Remarks on the Standard Model predictions for R(D) and R(D*) Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 1 Pages 013003 - 7pp
Keywords
Abstract Semileptonic b -> c transitions, and in particular the ratios R(D-(*())) = Gamma(B -> D-(*())tau nu)/Gamma(B -> D-(*())l nu), can be used to test the universality of the weak interactions. In light of the recent discrepancies between the experimental measurements of these observables by the BABAR, Belle, and LHCb collaborations and the Standard Model predicted values, we study the robustness of the latter. Our analysis reveals that R(D) might be enhanced by lepton mass effects associated to the mostly unknown scalar form factor. In contrast, the Standard Model prediction for R(D*) is found to be more robust, because possible pollutions from B* contributions turn out to be negligibly small; this indicates that R(D) is a promising observable for searches of new physics.
Address [Kim, C. S.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea, Email: cskim@yonsei.ac.kr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000400774700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3136
Permanent link to this record
 

 
Author Boucenna, S.M.; Valle, J.W.F.; Vicente, A.
Title (down) Predicting charged lepton flavor violation from 3-3-1 gauge symmetry Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 5 Pages 053001 - 7pp
Keywords
Abstract The simplest realization of the inverse seesaw mechanism in a SU(3)(C) circle times SU(3)(L) circle times U(1)(X) gauge theory offers striking flavor correlations between rare charged lepton flavor violating decays and the measured neutrino oscillations parameters. The predictions follow from the gauge structure itself without the need for any flavor symmetry. Such tight complementarity between charged lepton flavor violation and neutrino oscillations renders the scenario strictly testable.
Address [Boucenna, Sofiane M.; Valle, Jose W. F.; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: boucenna@lnf.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000360885800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2386
Permanent link to this record
 

 
Author Staub, F.; Athron, P.; Basso, L.; Goodsell, M.D.; Harries, D.; Krauss, M.E.; Nickel, K.; Opferkuch, T.; Ubaldi, L.; Vicente, A.; Voigt, A.
Title (down) Precision tools and models to narrow in on the 750 GeV diphoton resonance Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 9 Pages 516 - 57pp
Keywords
Abstract The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
Address [Staub, Florian] CERN, Dept Theoret Phys, Geneva, Switzerland, Email: florian.staub@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000384579900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2826
Permanent link to this record
 

 
Author Boucenna, S.M.; Celis, A.; Fuentes-Martin, J.; Vicente, A.; Virto, J.
Title (down) Phenomenology of an SU(2) x SU(2) x U(1) model with lepton-flavour non-universality Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 059 - 43pp
Keywords Beyond Standard Model; Gauge Symmetry
Abstract We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b -> clv and b -> sl(+) l(-) decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2)(1) x SU(2)(2) x U(l)(Y) which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector -like fermions give rise to potentially large new physics contributions in flavour transitions mediated by WI and Z' bosons. This model can ease tensions in B -physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios RM =Gamma(B -> M mu(+)mu(-))/Gamma(B -> Me(+)e(-)), with M = K*, phi, are found to be reduced with respect to the Standard Model expectation R-M similar or equal to 1.
Address [Boucenna, Sofiane M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Via Enrico Fermi 40, I-100044 Frascati, Italy, Email: boucenna@lnf.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000399290600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3063
Permanent link to this record
 

 
Author Escribano, P.; Hirsch, M.; Nava, J.; Vicente, A.
Title (down) Observable flavor violation from spontaneous lepton number breaking Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 098 - 31pp
Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries
Abstract We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.
Address [Escribano, Pablo; Hirsch, Martin; Nava, Jacopo; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrcit Jose Beltrcin 2, E-46980 Valencia, Spain, Email: pablo.escribano@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000744514600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5084
Permanent link to this record
 

 
Author Aoki, M.; Toma, T.; Vicente, A.
Title (down) Non-thermal production of minimal dark matter via right-handed neutrino decay Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 063 - 19pp
Keywords dark matter theory; gamma ray theory; particle physics – cosmology connection; physics of the early universe
Abstract Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.
Address [Aoki, Mayumi] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan, Email: mayumi@hep.s.kanazawa-u.ac.jp;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365690000063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2479
Permanent link to this record
 

 
Author Boucenna, S.M.; Celis, A.; Fuentes-Martin, J.; Vicente, A.; Virto, J.
Title (down) Non-abelian gauge extensions for B-decay anomalies Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 760 Issue Pages 214-219
Keywords
Abstract We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in semi-leptonic b -> sl(+)l(-) and b -> cl nu decays. We classify the possible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the SU(2)(L) factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. Finally, we provide an explicit model that can explain the B-decay anomalies in a coherent way and confront it with the relevant phenomenological constraints.
Address [Boucenna, Sofiane M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, CP 13, I-100044 Frascati, Italy, Email: javier.fuentes@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000382890500032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2803
Permanent link to this record
 

 
Author Cepedello, R.; Escribano, P.; Vicente, A.
Title (down) Neutrino masses, flavor anomalies, and muon g-2 from dark loops Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 035034 - 6pp
Keywords
Abstract The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.
Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001004183600012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5558
Permanent link to this record
 

 
Author Peinado, E.; Vicente, A.
Title (down) Neutrino masses from R-parity violation with a Z(3) symmetry Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 9 Pages 093024 - 9pp
Keywords
Abstract We consider a supersymmetric model where the neutrino mass matrix arises from bilinear and trilinear R-parity violation, both restricted by a Z(3) flavor symmetry. Assuming flavor-blind soft supersymmetry breaking conditions, corrected at low energies due to running effects, we obtain a neutrino mass matrix in agreement with oscillation data. In particular, a large theta(13) angle can be easily accommodated. We also find a correlation between the reactor and atmospheric mixing angles. This leads in some scenarios to a clear deviation from theta(23) = pi/4. The lightest supersymmetric particle decay, dominated by the trilinear couplings, provides a direct way to test the model at colliders.
Address [Peinado, E.] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: epeinado@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000311538000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1243
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Rocha-Moran, P.; Vicente, A.
Title (down) Minimal 3-loop neutrino mass models and charged lepton flavor violation Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 067 - 37pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models “minimal” since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow regions of their parameter spaces.
Address [Cepedello, Ricardo; Hirsch, Martin; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000565216600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4522
Permanent link to this record