toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title (down) Ultrahigh Energy Neutrinos at the Pierre Auger Observatory Type Journal Article
  Year 2013 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2013 Issue Pages 708680 - 18pp  
  Keywords  
  Abstract The observation of ultrahigh energy neutrinos (UHE nu s) has become a priority in experimental astroparticle physics. UHE nu s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going nu) or in the Earth crust (Earth-skimming nu), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE nu s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE nu s in the EeV range and above.  
  Address Univ Tecn Lisboa, LIP, Lisbon, Portugal  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317204500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1398  
Permanent link to this record
 

 
Author Boucenna, M.S.; Morisi, S.; Valle, J.W.F. url  doi
openurl 
  Title (down) The Low-Scale Approach to Neutrino Masses Type Journal Article
  Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2014 Issue Pages 831598 - 15pp  
  Keywords  
  Abstract In this short review we revisit the broad landscape of low-scale SU(3)(C) circle times SU(2)(L) circle times U(1)(Y) models of neutrino mass generation, with view on their phenomenological potential. This includes signatures associated to direct neutrino mass messenger production at the LHC, as well as messenger-induced lepton flavor violation processes. We also briefly comment on the presence of WIMP cold dark matter candidates.  
  Address [Boucenna, Sofiane M.; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular Parque Cient IFIC, AHEP Grp, Valencia 46980, Spain, Email: stefano.morisi@gmail.com  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340751800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1897  
Permanent link to this record
 

 
Author Novella, P. url  doi
openurl 
  Title (down) The antineutrino energy structure in reactor experiments Type Journal Article
  Year 2015 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2015 Issue Pages 364392 - 12pp  
  Keywords  
  Abstract The recent observation of an energy structure in the reactor antineutrino spectrum is reviewed. The reactor experiments Daya Bay, Double Chooz, and RENO have reported a consistent excess of antineutrinos deviating from the flux predictions, with a local significance of about 4 sigma between 4 and 6 MeV of the positron energy spectrum. The possible causes of the structure are analyzed in this work, along with the different experimental approaches developed to identify its origin. Considering the available data and results from the three experiments, the most likely explanation concerns the reactor flux predictions and the associated uncertainties. Therefore, the different current models are described and compared. The possible sources of incompleteness or inaccuracy of such models are discussed, as well as the experimental data required to improve their precision.  
  Address [Novella, Pau] CSIC, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: pau.novella@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corp Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367926000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2531  
Permanent link to this record
 

 
Author Antonelli, V.; Miramonti, L.; Pena-Garay, C.; Serenelli, A. url  doi
openurl 
  Title (down) Solar Neutrinos Type Journal Article
  Year 2013 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2013 Issue Pages 351926 - 34pp  
  Keywords  
  Abstract The study of solar neutrinos has given a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.  
  Address Univ Milan, Dipartimento Fis, I-20133 Milan, Italy, Email: vito.antonelli@mi.infn.it  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316881700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1392  
Permanent link to this record
 

 
Author Minakata, H.; Pena-Garay, C. url  doi
openurl 
  Title (down) Solar Neutrino Observables Sensitive to Matter Effects Type Journal Article
  Year 2012 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2012 Issue Pages 349686 - 15pp  
  Keywords  
  Abstract We discuss constraints on the coefficient A(MSW) which is introduced to simulate the effect of weaker or stronger matter potential for electron neutrinos with the current and future solar neutrino data. The currently available solar neutrino data leads to a bound A(MSW) = 1.47(+0.54)(-0.42)((-0.82)(+1.88)) at 1 sigma (3 sigma) CL, which is consistent with the Standard Model prediction A(MSW) = 1. For weaker matter potential (A(MSW) < 1), the constraint which comes from the flat B-8 neutrino spectrum is already very tight, indicating the evidence for matter effects. However for stronger matter potential (A(MSW) > 1), the bound is milder and is dominated by the day-night asymmetry of B-8 neutrino flux recently observed by Super-Kamiokande. Among the list of observables of ongoing and future solar neutrino experiments, we find that (1) an improved precision of the day-night asymmetry of B-8 neutrinos, (2) precision measurements of the low-energy quasi-monoenergetic neutrinos, and (3) the detection of the upturn of the B-8 neutrino spectrum at low energies are the best choices to improve the bound on A(MSW).  
  Address [Minakata, H.] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan, Email: hisakazu.minakata@gmail.com  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311152600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1234  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva