toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bierenbaum, I.; Catani, S.; Draggiotis, P.; Rodrigo, G. url  doi
openurl 
  Title (up) A tree-loop duality relation at two loops and beyond Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 073 - 22pp  
  Keywords NLO Computations; QCD  
  Abstract The duality relation between one-loop integrals and phase-space integrals, developed in a previous work, is extended to higher-order loops. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators, which compensates for the absence of the multiple-cut contributions that appear in the Feynman tree theorem. We rederive the duality theorem at one-loop order in a form that is more suitable for its iterative extension to higher-loop orders. We explicitly show its application to two-and three-loop scalar master integrals, and we discuss the structure of the occurring cuts and the ensuing results in detail.  
  Address [Bierenbaum, Isabella; Draggiotis, Petros; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: isabella.bierenbaum@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284147000016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 326  
Permanent link to this record
 

 
Author Kleiss, R.H.P.; Malamos, I.; Papadopoulos, C.G.; Verheyen, R. url  doi
openurl 
  Title (up) Counting to one: reducibility of one- and two-loop amplitudes at the integrand level Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 038 - 24pp  
  Keywords QCD Phenomenology; NLO Computations  
  Abstract Calculation of amplitudes in perturbative quantum field theory involve large loop integrals. The complexity of those integrals, in combination with the large number of Feynman diagrams, make the calculations very difficult. Reduction methods proved to be very helpful, lowering the number of integrals that need to be actually calculated. Especially reduction at the integrand level improves the speed and set-up of these calculations. In this article we demonstrate, by counting the numbers of tensor structures and independent coefficients, how to write such relations at the integrand level for one-and two-loop amplitudes. We clarify their connection to the so-called spurious terms at one loop and discuss their structure in the two-loop case. This method is also applicable to higher loops, and the results obtained apply to both planar and non-planar diagrams.  
  Address [Kleiss, Ronald H. P.; Verheyen, Rob] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands, Email: R.Kleiss@science.ru.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313123800038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1346  
Permanent link to this record
 

 
Author Campanario, F.; Kerner, M.; Ninh, L.D.; Rosario, I. url  doi
openurl 
  Title (up) Diphoton production in vector-boson scattering at the LHC at next-to-leading order QCD Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 072 - 25pp  
  Keywords NLO Computations  
  Abstract In this paper, we present results at next-to-leading order (NLO) QCD for photon pair production in association with two jets via vector boson scattering within the Standard Model (SM), and also in an effective field theory framework with anomalous gauge coupling effects via bosonic dimension-6 and 8 operators. We observe that, com- pared to other processes in the class of two electroweak (EW) vector boson production in association with two jets, more exclusive cuts are needed in order to suppress the SM QCD-induced background channel. As expected, the NLO QCD corrections reduce the scale uncertainties considerably. Using a well-motivated dynamical scale choice, we find moderate K -factors for the EW-induced process while the QCD-induced channel receives much larger corrections. Furthermore, we observe that applying a cut of Delta phi(cut)(j2 gamma 1) <2.5 for the second hardest jet and the hardest photon helps to increase the signal significance and reduces the impact of higher-order QCD corrections.  
  Address [Campanario, Francisco; Rosario, Ivan] Univ Valencia, CSIC, IFIC, Div Theory, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000541147600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4433  
Permanent link to this record
 

 
Author Sborlini, G.F.R.; de Florian, D.; Rodrigo, G. url  doi
openurl 
  Title (up) Double collinear splitting amplitudes at next-to-leading order Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 018 - 55pp  
  Keywords NLO Computations; Hadronic Colliders  
  Abstract We compute the next-to-leading order (NLO) QCD corrections to the 1 -> 2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.  
  Address [Sborlini, German F. R.; de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, Argentina, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329617800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1698  
Permanent link to this record
 

 
Author Sborlini, G.F.R.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Rodrigo, G. url  doi
openurl 
  Title (up) Four-dimensional unsubtraction from the loop-tree duality Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 160 - 42pp  
  Keywords NLO Computations  
  Abstract We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes, and the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for gamma* -> q (q) over bar (g), and its generalisation to multi-leg processes. The extension to next-to-next-to-leading order (NNLO) is briefly commented.  
  Address [Sborlini, German F. R.; Driencourt-Mangin, Felix; Hernandez-Pinto, Roger J.; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382685100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2793  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva