toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blanes-Selva, V.; Ruiz-Garcia, V.; Tortajada, S.; Benedi, J.M.; Valdivieso, B.; Garcia-Gomez, J.M. url  doi
openurl 
  Title (up) Design of 1-year mortality forecast at hospital admission: A machine learning approach Type Journal Article
  Year 2021 Publication Health Informatics Journal Abbreviated Journal Health Inform. J.  
  Volume 27 Issue 1 Pages 13pp  
  Keywords machine learning; palliative care; hospital admission data; mortality forecast  
  Abstract Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to maximize the quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of the risk of 1-year mortality. The main aim of this work is to develop and validate machine-learning-based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Five machine-learning techniques were applied using a retrospective dataset. The evaluation was performed with five metrics computed by a resampling strategy: Accuracy, the area under the ROC curve, Specificity, Sensitivity, and the Balanced Error Rate. All models reported an AUC ROC from 0.857 to 0.91. Specifically, Gradient Boosting Classifier was the best model, producing an AUC ROC of 0.91, a sensitivity of 0.858, a specificity of 0.808, and a BER of 0.1687. Information from standard procedures at hospital admission combined with machine learning techniques produced models with competitive discriminative power. Our models reach the best results reported in the state of the art. These results demonstrate that they can be used as an accurate data-driven palliative care criteria inclusion.  
  Address [Blanes-Selva, Vicent; Benedi, Jose-Miguel; Garcia-Gomez, Juan M.] Univ Politecn Valencia, Valencia, Spain, Email: viblasel@upv.es  
  Corporate Author Thesis  
  Publisher Sage Publications Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-4582 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000645567000008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5182  
Permanent link to this record
 

 
Author Folgado, M.G.; Sanz, V. url  doi
openurl 
  Title (up) Exploring the political pulse of a country using data science tools Type Journal Article
  Year 2022 Publication Journal of Computational Social Science Abbreviated Journal J. Comput. Soc. Sci.  
  Volume 5 Issue Pages 987-1000  
  Keywords Politics; Spain; Sentiment analysis; Artificial Intelligence; Machine learning; Neural networks; Natural Language Processing (NLP)  
  Abstract In this paper we illustrate the use of Data Science techniques to analyse complex human communication. In particular, we consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas. We also study the temporal evolution of their contents as a reaction to specific events. We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media. We also train a Fully-Connected Neural Network (FCNN) to recognise the political affiliation of a tweet. The FCNN is able to predict the origin of the tweet with a precision in the range of 71-75%, and the political leaning (left or right) with a precision of around 90%. This study is meant to be viewed as an example of how to use Twitter data and different types of Data Science tools for a political analysis.  
  Address [Folgado, Miguel G.; Sanz, Veronica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia 46980, Spain, Email: migarfol@upvnet.upv.es;  
  Corporate Author Thesis  
  Publisher Springernature Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2432-2717 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000742263500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5077  
Permanent link to this record
 

 
Author Amerio, A.; Cuoco, A.; Fornengo, N. url  doi
openurl 
  Title (up) Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 029 - 39pp  
  Keywords gamma ray theory; Machine learning  
  Abstract We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the FermiLAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1, 10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from cataloged sources, and then extends as dN/dS " S-2 in the unresolved regime, down to fluxes of 5 center dot 10-12 cm-2 s-1. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.  
  Address [Amerio, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001097055700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5785  
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F. url  doi
openurl 
  Title (up) Gamma/hadron separation with the HAWC observatory Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1039 Issue Pages 166984 - 13pp  
  Keywords High energy; Crab Nebula; G/H separation; Machine Learning  
  Abstract The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with hadrons representing the vast majority (> 99.9%) of these events. The standard gamma/hadron separation technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods (boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron separation obtained in HAWC.  
  Address [Alfaro, R.; Angeles Camacho, J. R.; Avila Rojas, D.; Belmont-Moreno, E.; Espinoza, C.; Garcia, D.; Hernandez, S.; Leon Vargas, H.; Sandoval, A.; Serna-Franco, J.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico, Email: tcapistran@astro.unam.mx;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861747900006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5371  
Permanent link to this record
 

 
Author Ferrer-Sanchez, A.; Martin-Guerrero, J.; Ruiz de Austri, R.; Torres-Forne, A.; Font, J.A. url  doi
openurl 
  Title (up) Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics Type Journal Article
  Year 2024 Publication Computer Methods in Applied Mechanics and Engineering Abbreviated Journal Comput. Meth. Appl. Mech. Eng.  
  Volume 424 Issue Pages 116906 - 18pp  
  Keywords Riemann problem; Euler equations; Machine learning; Neural networks; Relativistic hydrodynamics  
  Abstract We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.  
  Address [Ferrer-Sanchez, Antonio; Martin-Guerrero, JoseD.] ETSE UV, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain, Email: Antonio.Ferrer-Sanchez@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-7825 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001221797400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6126  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva