toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gonzalez, P. url  doi
openurl 
  Title (up) A quark model study of strong decays of X(3915) Type Journal Article
  Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 44 Issue 7 Pages 075004 - 13pp  
  Keywords quark; meson; potential  
  Abstract Strong decays of X(3915) are analyzed from two quark model descriptions of X(3915), a conventional one in terms of the Cornell potential and an unconventional one from a generalized screened potential. We conclude that the experimental suppression of the OZI allowed decay X(3915) -> D (D) over bar might be explained in both cases due to the momentum dependence of the decay amplitude. However, the experimental significance of the OZI forbidden decay X(3915) -> omega J/psi could favor an unconventional description.  
  Address [Gonzalez, P.] Univ Valencia, Dept Fis Teor, CSIC, IFIC, E-46100 Valencia, Spain, Email: pedro.gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402890800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3158  
Permanent link to this record
 

 
Author Gonzalez, P. url  doi
openurl 
  Title (up) Charmonium description from a generalized screened potential model Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 1 Pages 014017 - 11pp  
  Keywords  
  Abstract A generalized screened potential model (GSPM), recently developed to study the bottomonium spectrum, is applied to the calculation of charmonium masses and electromagnetic widths. The presence in the GSPM of more quark-antiquark bound states than in conventional nonscreened potential models, allows for the assignment of GSPM states to cataloged nonconventional J(++) charmonium resonances as well as for the prediction of new (noncataloged) J(++) states. The results obtained seem to indicate that a reasonable overall description of J(++) charmonium resonances is feasible.  
  Address Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: pedro.gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000357860200002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2308  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title (up) chi(c1)(2p): an overshadowed charmoniumlike resonance Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 216 - 23pp  
  Keywords Properties of Hadrons; Quarkonium  
  Abstract A thorough study of the J(PC )= 1(++) elastic D0 & macr;D*(0) and D+D*(-) scattering, where the form of the meson-meson interaction is inferred from lattice QCD calculations of string breaking, is carried out for center-of-mass energies up to 4 GeV. We show that the presence of chi c1(3872), which can be naturally assigned to either a bound or virtual charmoniumlike state close below the D0 & macr;D*0 threshold, can overshadow a quasiconventional charmoniumlike resonance lying above threshold. This makes difficult the experimental detection of this resonance through the D0 & macr;D*(0) and D+D*(-) channels, despite being its expected main decay modes. We analyze alternative strong and electromagnetic decay modes. Comparison with existing data shows that this resonance may have already been observed through its decay to omega J/psi.  
  Address [Bruschini, R.] Ohio State Univ, Dept Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA, Email: bruschini.1@osu.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000938122900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5490  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title (up) Coupled-channel meson-meson scattering in the diabatic framework Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 7 Pages 074025 - 16pp  
  Keywords  
  Abstract We apply the diabatic framework, a QCD-based formalism for the unified study of quarkoniumlike systems in terms of heavy quark-antiquark and open-flavor meson-meson components, to the description of coupled-channel meson-meson scattering. For this purpose, we first introduce a numerical scheme to find the solutions of the diabatic Schrodinger equation for energies in the continuum, then we derive a general formula for calculating the meson-meson scattering amplitudes from these solutions. We thus obtain a completely nonperturbative procedure for the calculation of open-flavor meson-meson scattering cross sections from the diabatic potential, which is directly connected to lattice QCD calculations. A comprehensive analysis of various elastic cross sections for open-charm and open-bottom meson-meson pairs is performed in a wide range of the center-of-mass energies. The relevant structures are identified, showing a spectrum of quasiconventional and unconventional quarkoniumlike states. In addition to the customary Breit-Wigner peaks, we obtain nontrivial structures such as threshold cusps and minimums. Finally, our results are compared with existing data and with results from our previous bound-state-based analysis, finding full compatibility with both.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia CSIC, Unidad Teor, Inst Fis Corpusc, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000753716600003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5120  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title (up) Diabatic description of bottomoniumlike mesons Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 11 Pages 114016 - 13pp  
  Keywords  
  Abstract We apply the diabatic approach, specially suited for a QCD based study of conventional (quark-antiquark) and unconventional (quark-antiquark + meson-meson) meson states, to the description of hidden-bottom mesons. A spectral analysis of the I = 0, J(++) and 1(--) resonances with masses up to about 10.8 GeV is carried out. Masses and widths of all the experimentally known resonances, including conventional and unconventional states, can be well reproduced. In particular, we predict a significant B (B) over bar* component in Upsilon(10580). We also predict the existence of a not yet discovered unconventional 1(++) narrow state, with a significant B-s(B) over bar (s)* content making it to decay into Upsilon(1S)phi, whose experimental discovery would provide definite support to our theoretical analysis.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular, Unidad Teor, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000663019400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4860  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva