toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author O'Hare, C.A.J.; Caputo, A.; Millar, A.J.; Vitagliano, E. url  doi
openurl 
  Title (up) Axion helioscopes as solar magnetometers Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 4 Pages 043019 - 19pp  
  Keywords  
  Abstract Axion helioscopes search for solar axions and axionlike particles via inverse Primakoff conversion in strong laboratory magnets pointed at the Sun. Anticipating the detection of solar axions, we determine the potential for the planned next-generation helioscope, the International Axion Observatory (IAXO), to measure or constrain the solar magnetic field. To do this we consider a previously neglected component of the solar axion flux at sub-keV energies arising from the conversion of longitudinal plasmons. This flux is sensitively dependent to the magnetic field profile of the Sun, with lower energies corresponding to axions converting into photons at larger solar radii. If the detector technology eventually installed in IAXO has an energy resolution better than 200 eV, then solar axions could become an even more powerful messenger than neutrinos of the magnetic field in the core of the Sun. For energy resolutions better than 10 eV, IAXO could access the inner 70% of the Sun and begin to constrain the field at the tachocline: the boundary between the radiative and convective zones. The longitudinal plasmon flux from a toroidal magnetic field also has an additional 2% geometric modulation effect which could be used to measure the angular dependence of the magnetic field.  
  Address [O'Hare, Ciaran A. J.] Univ Sydney, Sch Phys, Phys Rd, Sydney, NSW 2006, Australia, Email: ciaran.ohare@sydney.edu.au;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000562631300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4513  
Permanent link to this record
 

 
Author Caputo, A.; Zavala, J.; Blas, D. url  doi
openurl 
  Title (up) Binary pulsars as probes of a Galactic dark matter disk Type Journal Article
  Year 2018 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 19 Issue Pages 1-11  
  Keywords Dark disk; Binary pulsar  
  Abstract As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn >> 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn << 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn similar to 1.  
  Address [Caputo, Andrea; Blas, Diego] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428024400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3527  
Permanent link to this record
 

 
Author Caputo, A.; Sberna, L.; Frias, M.; Blas, D.; Pani, P.; Shao, L.J.; Yan, W.M. url  doi
openurl 
  Title (up) Constraints on millicharged dark matter and axionlike particles from timing of radio waves Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 6 Pages 063515 - 7pp  
  Keywords  
  Abstract We derive constraints on millicharged dark matter and axionlike particles using pulsar timing and fast radio burst observations. For dark matter particles of charge epsilon e, the constraint from time of arrival (TOA) of waves is epsilon/m(milli) less than or similar to 10(-8) eV(-1), for masses m(milli) greater than or similar to 10(-6) eV. For axionlike particles, the polarization of the signals from pulsars yields a bound in the axial coupling g/ m(a) less than or similar to 10(-13) Gev(-1)/(10(-22) eV),for m(a) less than or similar to 10(-19) eV. Both bounds scale as (rho/rho(dm))(1/2 )for fractions of the total dark matter energy density rho(dm). We make a precise study of these bounds using TOA from several pulsars, FRB 121102, and polarization measurements of PSR J0437 – 4715. Our results rule out a new region of the parameter space for these dark matter models.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: lsberna@perimeterinstitute.ca  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486646600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4147  
Permanent link to this record
 

 
Author Caputo, A.; Reig, M. url  doi
openurl 
  Title (up) Cosmic implications of a low-scale solution to the axion domain wall problem Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 6 Pages 063530 - 10pp  
  Keywords  
  Abstract The post-inflationary breaking of Peccei-Quinn (PQ) symmetry can lead to the cosmic domain wall catastrophe. In this paper we show how to avoid domain walls by implementing the instanton interference effect with a new interaction which itself breaks PQ symmetry and confines at an energy scale smaller than Lambda(QCD). We give a general description of the mechanism and consider its cosmological implications and constraints within a minimal model. Contrary to other mechanisms, we do not require an inverse phase transition or fine-tuned bias terms. Incidentally, the mechanism leads to the introduction of new self-interacting dark matter candidates and the possibility of producing gravitational waves in the frequency range of SKA. Unless a fine-tuned hidden sector is introduced, the mechanism predicts a QCD axion in the mass range 1-15 meV.  
  Address [Caputo, Andrea; Reig, Mario] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487735200009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4152  
Permanent link to this record
 

 
Author Caputo, A.; Esposito, A.; Geoffray, E.; Polosa, A.D.; Sun, S.C. url  doi
openurl 
  Title (up) Dark matter, dark photon and superfluid He-4 from effective field theory Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue Pages 135258 - 6pp  
  Keywords Light dark matter; Effective theory; Helium; Phonon; Dark photon  
  Abstract We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: angelo.esposito@epfl.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4349  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva