toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Etxebeste, A.; Barrio, J.; Muñoz, E.; Oliver, J.F.; Solaz, C.; Llosa, G. doi  openurl
  Title (up) 3D position determination in monolithic crystals coupled to SiPMs for PET Type Journal Article
  Year 2016 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 61 Issue 10 Pages 3914-3934  
  Keywords monolithic crystal; silicon photomultiplier; depth of interaction  
  Abstract The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a 12 x 12 x 10 mm(3) LYSO crystal coupled to an 8 x 8-pixel array of SiPMs is evaluated. The 3D interaction position of.-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is similar to 0.9 mm FWHM and similar to 1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is similar to 5.3 mm for 5 mm thick crystal and similar to 9.6 mm for 10 mm thick crystal.  
  Address [Etxebeste, Ane; Barrio, John; Munoz, Enrique; Oliver, Josep F.; Solaz, Carles; Llosa, Gabriela] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: ane.etxebeste@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376792800014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2708  
Permanent link to this record
 

 
Author Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V.; Ladarescu, I.; Redondo, M.L.; Tain, J.L.; Tolosa, A.; Domingo-Pardo, C.; Calvino, F.; Casanovas, A.; Tarifeño-Saldivia, A.; Alcayne, V.; Cano-Ott, D.; Martinez, T.; Guerrero, C.; Barbagallo, M.; Macina, D.; Bacak, M. doi  openurl
  Title (up) A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 985 Issue Pages 164709 - 8pp  
  Keywords Silicon photomultiplier; Radiation detectors; Time-of-flight; Radiative capture; Total energy detector; Pulse-height weighting technique  
  Abstract Low efficiency total-energy detectors (TEDs) are one of the main tools for neutron capture cross section measurements utilizing the time-of-flight (TOF) technique. State-of-the-art TEDs are based on a C6D6 liquid-scintillation cell optically coupled to a fast photomultiplier tube. The large photomultiplier tube represents yet a significant contribution to the so-called neutron sensitivity background, which is one of the most conspicuous sources of uncertainty in this type of experiments. Here we report on the development of a first prototype of a TED based on a silicon-photomultiplier (SiPM) readout, thus resulting in a lightweight and much more compact detector. Apart from the envisaged improvement in neutron sensitivity, the new system uses low voltage (+28 V) and low current supply (-50 mA), which is more practical than the-kV supply required by conventional photomultipliers. One important difficulty hindering the earlier implementation of SiPM readout for this type of detector was the large capacitance for the output signal when all pixels of a SiPM array are summed together. The latter leads to long pulse rise and decay times, which are not suitable for time-of-flight experiments. In this work we demonstrate the feasibility of a Schottky-diode multiplexing readout approach, that allows one to preserve the excellent timing properties of SiPMs, hereby paving the way for their implementation in future neutron TOF experiments.  
  Address [Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V; Ladarescu, I; Redondo, M. Lopez; Tain, J. L.; Tolosa, A.; Domingo-Pardo, C.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: dacaldia@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000592358200019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4638  
Permanent link to this record
 

 
Author Studen, A.; Chesi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Linhart, V.; Mikuz, M.; Stankova, V.; Weilhammer, P.; Zontar, D. doi  openurl
  Title (up) A silicon PET probe Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 648 Issue Pages S255-S258  
  Keywords PET; Silicon detectors  
  Abstract PET scanners with high spatial resolution offer a great potential in improving diagnosis, therapy monitoring and treatment validation for several severe diseases. One way to improve resolution of a PET scanner is to extend a conventional PET ring with a small probe with excellent spatial resolution. The probe is intended to be placed close to the area of interest. The coincidences of interactions within the probe and the external ring provide a subset of data which combined with data from external ring, greatly improve resolution in the area viewed by the probe. Our collaboration is developing a prototype of a PET probe, composed of high-resolution silicon pad detectors. The detectors are 1 mm thick, measuring 40 by 26 mm(2), and several such sensors are envisaged to either compensate for low stopping power of silicon or increase the area covered by the probe. The sensors are segmented into 1 mm(3) cubic voxels, giving 1040 readout pads per sensor. A module is composed of two sensors placed in a back-to-back configuration, allowing for stacking fraction of up to 70% within a module. The pads are coupled to a set of 16 ASICs (VaTaGP7.1 by IDEAS) per module and read out through a custom designed data acquisition board, allowing for trigger and data interfacing with the external ring. This paper presents an overview of probe requirements and expected performance parameters. It will focus on the characteristics of the silicon modules and their impact on overall probe performance, including spatial resolution, energy resolution and timing resolution. We will show that 1 mm(3) voxels will significantly extend the spatial resolution of conventional PET rings, and that broadening of timing resolution related to varying depth of photon interactions can be compensated to match the timing resolution of the external ring. The initial test results of the probe will also be presented.  
  Address [Studen, A.; Cindro, V.; Grosicar, B.; Mikuz, M.; Zontar, D.] Jozef Stefan Inst, Ljubljana, Slovenia, Email: andrej.studen@ijs.si  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1070  
Permanent link to this record
 

 
Author Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Lopez, J.G.; Jimenez-Ramos, M.C.; Hueso-Gonzalez, F.; Ros, A.; Llosa, G. doi  openurl
  Title (up) Characterization of a Compton camera based on the TOFPET2 ASIC Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 202 Issue Pages 110507 - 11pp  
  Keywords Compton camera; Hadron therapy; LaBr3; PETsys TOFPET2; Silicon photomultipliers  
  Abstract The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.  
  Address [Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casana, J., V; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Rita.Viegas@ific.uv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000870840600006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5392  
Permanent link to this record
 

 
Author Latonova, V. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title (up) Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1050 Issue Pages 168119 - 5pp  
  Keywords HL-LHC; ATLAS ITk; Silicon micro-strip sensor; Polysilicon bias resistor; Testchip  
  Abstract The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.  
  Address [Latonova, V.; Federicova, P.; Kroll, J.; Kvasnicka, J.; Mikestikova, M.] Acad Sci Czech Republ, Inst Phys, Slovance 2, Prague 8, Czech Republic, Email: vera.latonova@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001035405300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5601  
Permanent link to this record
 

 
Author Fernandez-Tejero, J.; Bartl, U.; Docke, M.; Fadeyev, V.; Fleta, C.; Hacker, J.; Hommels, B.; Lacasta, C.; Parzefall, U.; Soldevila, U.; Stocker, G.; Ullan, M.; Unno, Y. doi  openurl
  Title (up) Design and evaluation of large area strip sensor prototypes for the ATLAS Inner Tracker detector Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 981 Issue Pages 164536 - 6pp  
  Keywords ATLAS; Silicon strip sensors; Large area silicon sensors; Layout design; Prototype evaluation; Market survey  
  Abstract The ATLAS community is facing the last stages prior to the production of the upgraded silicon strip Inner Tracker for the High-Luminosity Large Hadron Collider. An extensive Market Survey was carried out in order to evaluate the capability of different foundries to fabricate large area silicon strip sensors, satisfying the ATLAS specifications. The semiconductor manufacturing company, Infineon Technologies AG, was one of the two foundries, along with Hamamatsu Photonics K.K., that reached the last stage of the evaluation for the production of the new devices. The full prototype wafer layout for the participation of Infineon, called ATLAS17LS-IFX, was designed using a newly developed Python-based Automatic Layout Generation Tool, able to rapidly design sensors with different characteristics and dimensions based on a few geometrical and technological input parameters. This work presents the layout design process and the results obtained from the evaluation of the new Infineon large area sensors before and after proton and neutron irradiations, up to fluences expected in the inner layers of the future ATLAS detector.  
  Address [Fernandez-Tejero, J.; Fleta, C.; Ullan, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000581799800023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4579  
Permanent link to this record
 

 
Author Unno, Y. et al; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti-Garcia, S.; Soldevila, U. doi  openurl
  Title (up) Development of n(+) -in-p large-area silicon microstrip sensors for very high radiation environments-ATLAS12 design and initial results Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 765 Issue Pages 80-90  
  Keywords Silicon strip; n(+)-in-p; P-type; Radiation-tolerant; HL-LHC; PTP  
  Abstract We have been developing a novel radiation tolerant n(+)-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float zone wafers, where large area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 pm and slim edge space of 450 pm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.  
  Address [Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England, Email: yoshinobu.unno@kek.jp  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344621000016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2002  
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J. doi  openurl
  Title (up) Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 764 Issue Pages 241-246  
  Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy  
  Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.  
  Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341987000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1929  
Permanent link to this record
 

 
Author Grkovski, M.; Brzezinski, K.; Cindro, V.; Clinthorne, N.H.; Kagan, H.; Lacasta, C.; Mikuz, M.; Solaz, C.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title (up) Evaluation of a high resolution silicon PET insert module Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 788 Issue Pages 86-94  
  Keywords Positron emission tomography; Silicon detectors; PET insert; Image reconstruction  
  Abstract Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm(2) pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (20) geometry with a Jaszczak phantom (rod diameters of 12-4.8 mm) Filled with F-18-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).  
  Address [Grkovski, Milan; Cindro, Vladimir; Mikuz, Marko; Studen, Andrej; Zontar, Dejan] Jozef Stefan Inst, Ljubljana, Slovenia, Email: milan.grkovski@ijs.si  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354870700016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2232  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F. doi  openurl
  Title (up) Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
  Year 2024 Publication Sensors Abbreviated Journal Sensors  
  Volume 24 Issue 7 Pages 2084 - 12pp  
  Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering  
  Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.  
  Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201226600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6063  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva