toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M. url  doi
openurl 
  Title (up) A(FB) in the SMEFT: precision Z physics at the LHC Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 021 - 27pp  
  Keywords Beyond Standard Model; Effective Field Theories  
  Abstract We study the forward-backward asymmetry A(FB) in pp -> l(+)l(-) at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current A(FB) data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.  
  Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000683833600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4935  
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Naviliat-Cuncic, O. url  doi
openurl 
  Title (up) Comprehensive analysis of beta decays within and beyond the Standard Model Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 126 - 36pp  
  Keywords Effective Field Theories; Beyond Standard Model; Quark Masses and SM Parameters  
  Abstract Precision measurements in allowed nuclear beta decays and neutron decay are reviewed and analyzed both within the Standard Model and looking for new physics. The analysis incorporates the most recent experimental and theoretical developments. The results are interpreted in terms of Wilson coefficients describing the effective interactions between leptons and nucleons (or quarks) that are responsible for beta decay. New global fits are performed incorporating a comprehensive list of precision measurements in neutron decay, superallowed 0(+)-> 0(+) transitions, and other nuclear decays that include, for the first time, data from mirror beta transitions. The results confirm the V-A character of the interaction and translate into updated values for V-ud and g(A) at the 10(-4) level. We also place new stringent limits on exotic couplings involving left-handed and right-handed neutrinos, which benefit significantly from the inclusion of mirror decays in the analysis.  
  Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: adam.falkowski@ijclab.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000640519700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4804  
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Tabrizi, Z. url  doi
openurl 
  Title (up) Consistent QFT description of non-standard neutrino interactions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 048 - 23pp  
  Keywords Effective Field Theories; Neutrino Physics  
  Abstract Neutrino oscillations are precision probes of new physics. Apart from neutrino masses and mixings, they are also sensitive to possible deviations of low-energy interactions between quarks and leptons from the Standard Model predictions. In this paper we develop a systematic description of such non-standard interactions (NSI) in oscillation experiments within the quantum field theory framework. We calculate the event rate and oscillation probability in the presence of general NSI, starting from the effective field theory (EFT) in which new physics modifies the flavor or Lorentz structure of charged-current interactions between leptons and quarks. We also provide the matching between the EFT Wilson coefficients and the widely used simplified quantum-mechanical approach, where new physics is encoded in a set of production and detection NSI parameters. Finally, we discuss the consistency conditions for the standard NSI approach to correctly reproduce the quantum field theory result.  
  Address [Falkowski, Adam] Univ Paris Saclay, CNRS IN2P3, IJCLab, F-91405 Orsay, France, Email: adam.falkowski@th.u-psud.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000593911400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4623  
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Palavric, A.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title (up) Constraints on subleading interactions in beta decay Lagrangian Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 091 - 54pp  
  Keywords Effective Field Theories; Hadronic Matrix Elements and Weak Decays; Effective Field Theories of QCD; SMEFT  
  Abstract We discuss the effective field theory (EFT) for nuclear beta decay. The general quark-level EFT describing charged-current interactions between quarks and leptons is matched to the nucleon-level non-relativistic EFT at the OMeV momentum scale characteristic for beta transitions. The matching takes into account, for the first time, the effect of all possible beyond-the-Standard-Model interactions at the subleading order in the recoil momentum. We calculate the impact of all the Wilson coefficients of the leading and subleading EFT Lagrangian on the differential decay width in allowed beta transitions. As an example application, we show how the existing experimental data constrain the subleading Wilson coefficients corresponding to pseudoscalar, weak magnetism, and induced tensor interactions. The data display a 3.5 sigma evidence for nucleon weak magnetism, in agreement with the theory prediction based on isospin symmetry.  
  Address [Falkowski, Adam; Rodriguez-Sanchez, Antonio] Univ Paris Saclay, IJCLab, CNRS, IN2P3, F-91405 Orsay, France, Email: adam.falkowski@ijclab.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001163170700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5966  
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.; Monsalvez-Pozo, K. url  doi
openurl 
  Title (up) EFT analysis of New Physics at COHERENT Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 074 - 53pp  
  Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Interactions; SMEFT  
  Abstract Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.  
  Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin; Monsalvez-Pozo, Kevin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988320800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5549  
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z. url  doi
openurl 
  Title (up) EFT at FASER nu Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 086 - 46pp  
  Keywords Effective Field Theories; Neutrino Physics  
  Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.  
  Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000707348700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5002  
Permanent link to this record
 

 
Author Cirigliano, V.; Falkowski, A.; Gonzalez-Alonso, M.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title (up) Hadronic tau Decays as New Physics Probes in the LHC Era Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 22 Pages 221801 - 7pp  
  Keywords  
  Abstract We analyze the sensitivity of hadronic tau decays to nonstandard interactions within the model-independent framework of the standard model effective field theory. Both exclusive and inclusive decays are studied, using the latest lattice data and QCD dispersion relations. We show that there are enough theoretically clean channels to disentangle all the effective couplings contributing to these decays, with the tau -> pi pi nu(tau) channel representing an unexpected powerful new physics probe. We find that the ratios of nonstandard couplings to the Fermi constant are bound at the subpercent level. These bounds are complementary to the ones from electroweak precision observables and pp -> tau nu(tau) measurements at the LHC. The combination of tau decay and LHC data puts tighter constraints on lepton universality violation in the gauge boson-lepton vertex corrections.  
  Address [Cirigliano, Vincenzo] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470885800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4050  
Permanent link to this record
 

 
Author Abele, H. et al; Algora, A.; Gonzalez-Alonso, M.; Novella, P. url  doi
openurl 
  Title (up) Particle physics at the European Spallation Source Type Journal Article
  Year 2023 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 1023 Issue Pages 1-84  
  Keywords ESS; Neutrons; NNBAR; ESSnuSB; nEDM  
  Abstract Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).  
  Address [Fynbo, H. O. U.; Uggerhoj, U. I.] Aarhus Univ, Dept Phys & Astron, Aarhus, Denmark, Email: milstead@fysik.su.se  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063474900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5685  
Permanent link to this record
 

 
Author Gonzalez-Alonso, M.; Pich, A.; Prades, J. url  doi
openurl 
  Title (up) Pinched weights and duality violation in QCD sum rules: A critical analysis Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 1 Pages 014019 - 7pp  
  Keywords  
  Abstract We analyze the so-called pinched weights, that are generally thought to reduce the violation of quarkhadron duality in finite-energy sum rules. After showing how this is not true in general, we explain how to address this question for the left-right correlator and any particular pinched weight, taking advantage of our previous work [1], where the possible high-energy behavior of the left-right spectral function was studied. In particular, we show that the use of pinched weights allows to determine with high accuracy the dimension six and eight contributions in the operator-product expansion, O-6 = (-4.3(-0.7)(+0.9)) x 10(-3) GeV6 and O-8 = (-7.2(-5.3)(+4.2)) x 10(-3) GeV8.  
  Address [Gonzalez-Alonso, Martin; Pich, Antonio] Univ Valencia, CSIC, Dept Fis Teor, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280470200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 403  
Permanent link to this record
 

 
Author Bhattacharya, T.; Cirigliano, V.; Cohen, S.D.; Filipuzzi, A.; Gonzalez-Alonso, M.; Graesser, M.L.; Gupta, R.; Lin, H.W. url  doi
openurl 
  Title (up) Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 5 Pages 054512 - 29pp  
  Keywords  
  Abstract Scalar and tensor interactions were once competitors to the now well-established V – A structure of the standard model weak interactions. We revisit these interactions and survey constraints from low-energy probes (neutron, nuclear, and pion decays) as well as collider searches. Currently, the most stringent limit on scalar and tensor interactions arise from 0(+) -> 0(+) nuclear decays and the radiative pion decay pi -> e nu gamma, respectively. For the future, we find that upcoming neutron beta decay and LHC measurements will compete in setting the most stringent bounds. For neutron beta decay, we demonstrate the importance of lattice computations of the neutron-to-proton matrix elements to setting limits on these interactions, and provide the first lattice estimate of the scalar charge and a new average of existing results for the tensor charge. Data taken at the LHC is currently probing these interactions at the 10(-2) level (relative to the standard weak interactions), with the potential to reach the less than or similar to 10(-3) level. We show that, with some theoretical assumptions, the discovery of a charged spin-0 resonance decaying to an electron and missing energy implies a lower limit on the strength of scalar interactions probed at low energy.  
  Address [Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Graesser, Michael L.; Gupta, Rajan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302171900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 966  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva