|   | 
Details
   web
Records
Author AGATA Collaboration (Akkoyun, S. et al); Algora, A.; Barrientos, D.; Domingo-Pardo, C.; Egea, F.J.; Gadea, A.; Huyuk, T.; Kaci, M.; Mendez, V.; Rubio, B.; Salt, J.; Tain, J.L.
Title (up) AGATA-Advanced GAmma Tracking Array Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 668 Issue Pages 26-58
Keywords AGATA; gamma-Ray spectroscopy; gamma-Ray tracking; HPGe detectors; Digital signal processing; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations
Abstract The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
Address [Boston, A. J.; Boston, H. C.; Colosimo, S.; Cooper, R. J.; Cresswell, J. R.; Dimmock, M. R.; Filmer, F.; Grint, A. N.; Harkness, L. J.; Judson, D. S.; Mather, A. R.; Moon, S.; Nelson, L.; Nolan, P. J.; Norman, M.; Oxley, D. C.; Rigby, S.; Sampson, J.; Scraggs, D. P.; Seddon, D.; Slee, M.; Stanios, T.; Thornhill, J.; Unsworth, C.; Wells, D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England, Email: a.j.boston@liverpool.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000300864200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 923
Permanent link to this record
 

 
Author Lauritsen, T. et al; Perez-Vidal, R.M.
Title (up) Characterization of a gamma-ray tracking array: A comparison of GRETINA and Gammasphere using a Co-60 source Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 836 Issue Pages 46-56
Keywords Segmented germanium detectors; Efficiency measurements; gamma-Ray tracking; Gammasphere; GRETINA; GRETA; gamma-Ray spectroscopy; Nuclear structure
Abstract In this paper; we provide a formalism for the characterization of tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4 pi array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4 pi implementation of GRETA.
Address [Lauritsen, T.; Zhu, S.; Ayangeakaa, A. D.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA, Email: torben@anl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000385601400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2830
Permanent link to this record
 

 
Author AGATA Collaboration; Farnea, E.; Recchia, F.; Bazzacco, D.; Kroll, T.; Podolyak, Z.; Quintana, B.; Gadea, A.
Title (up) Conceptual design and Monte Carlo simulations of the AGATA array Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 621 Issue 1-3 Pages 331-343
Keywords Monte Carlo code; gamma-ray tracking array
Abstract The aim of the Advanced GAmma Tracking Array (AGATA) project is the construction of an array based on the novel concepts of pulse shape analysis and gamma-ray tracking with highly segmented Ge semiconductor detectors. The conceptual design of AGATA and its performance evaluation under different experimental conditions has required the development of a suitable Monte Carlo code. In this article, the description of the code as well as simulation results relevant for AGATA, are presented.
Address [Farnea, E.; Recchia, F.; Bazzacco, D.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy, Email: Enrico.Farnea@pd.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000281109100045 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 390
Permanent link to this record
 

 
Author AGATA Collaboration (Clement, E. et al); Domingo-Pardo, C.; Gadea, A.; Perez-Vidal, R.M.; Civera, J.V.
Title (up) Conceptual design of the AGATA 1 pi array at GANIL Type Journal Article
Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 855 Issue Pages 1-12
Keywords AGATA spectrometer; GANIL facility; gamma-ray tracking; Pulse shape analysis; VAMOS plus plus spectrometer; NEDA detector; DIAMANT detector; PARIS LaBr3 detector; FATIMA LaBr3 detector; Plunger device
Abstract The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam gamma-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy gamma rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l pi array are presented.
Address [Clement, E.; Michelagnoli, C.; de France, G.; Li, H. J.; Lemasson, A.; Dejeon, C. Barthe; Beuzard, M.; Bougault, P.; Cacitti, J.; Foucher, J. -L.; Fremont, G.; Gangnant, P.; Goupil, J.; Houarner, C.; Jean, M.; Lefevre, A.; Legeard, L.; Legruel, F.; Maugeais, C.; Menager, L.; Menard, N.; Munoz, H.; Ozille, M.; Raine, B.; Ropert, J. A.; Saillant, F.; Spitaels, C.; Tripon, M.; Vallerand, Ph.; Voltolini, G.; Lopez-Martens, A.] CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000399846900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3091
Permanent link to this record
 

 
Author AGATA Collaboration (Valiente-Dobon, J.J. et al); Perez-Vidal, R.M.; Blasco Miquel, J.; Civera, J.V.; Gadea, A.
Title (up) Conceptual design of the AGATA 2 pi array at LNL Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1049 Issue Pages 168040 - 14pp
Keywords AGATA spectrometer; LNL facility; gamma-ray tracking; Pulse shape analysis; PRISMA spectrometer; EUCLIDES detector; DANTE detector; TRACE detector; Plunger device
Abstract The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.
Address [Valiente-Dobon, J. J.; Goasduff, A.; Angelini, F.; Balogh, M.; Brugnara, D.; Cocconi, P.; Cogo, A.; Collado, J.; Ertoprak, A.; Galtarossa, F.; Gambalonga, A.; Gongora Servin, B.; Gottardo, A.; Gozzelino, A.; Gulmini, M.; Marchi, T.; Modanese, P.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Pilotto, E.; Raniero, W.; Rosso, D.; Scarpa, D.; Sedlak, M.; Toniolo, N.; Volpe, V.; Zago, L.; Zanon, I.; Allegrini, M. L.; Benini, D.; Biasotto, M.; Corradi, L.; De Angelis, G.; De Ruvo, L.; Fantinel, S.; Fioretto, E.; Minarello, A.; Stefanini, A. M.] INFN, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001020811800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5590
Permanent link to this record