|   | 
Details
   web
Records
Author Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Zooming in on neutrino oscillations with DUNE Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 9 Pages 095025 - 11pp
Keywords
Abstract We examine the capabilities of the DUNE experiment as a probe of the neutrino mixing paradigm. Taking the current status of neutrino oscillations and the design specifications of DUNE, we determine the experiment's potential to probe the structure of neutrino mixing and CP violation. We focus on the poorly determined parameters theta(23) and delta(cp) and consider both two and seven years of run. We take various benchmarks as our true values, such as the current preferred values of theta(23) and delta(cp), as well as several theory-motivated choices. We determine quantitatively DUNE's potential to perform a precision measurement of theta(23), as well as to test the CP violation hypothesis in a model-independent way. We find that, after running for seven years, DUNE will make a substantial step in the precise determination of these parameters, bringing to quantitative test the predictions of various theories of neutrino mixing.
Address [Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: rahulsri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433027600011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3580
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F.
Title (down) XENON1T signal from transition neutrino magnetic moments Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 808 Issue Pages 135685 - 5pp
Keywords
Abstract The recent puzzling results of the XENONIT collaboration at few keV electronic recoils could be due to the scattering of solar neutrinos endowed with finite Majorana transition magnetic moments (TMMs). Within such general formalism, we find that the observed excess in the XENONIT data agrees well with this interpretation. The required TMM strengths lie within the limits set by current experiments, such as Borexino, specially when one takes into account a possible tritium contamination.
Address [Miranda, O. G.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571769700059 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4541
Permanent link to this record
 

 
Author Hirsch, M.; Lineros, R.A.; Morisi, S.; Palacio, J.; Rojas, N.; Valle, J.W.F.
Title (down) WIMP dark matter as radiative neutrino mass messenger Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 149 - 18pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics
Abstract The minimal seesaw extension of the Standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)(L). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.
Address [Hirsch, M.; Lineros, R. A.; Palacio, J.; Valle, J. W. F.] Univ Valencia, Edificio Inst Paterna, CSIC, Inst Fis Corpuscular,AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000326047200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1623
Permanent link to this record
 

 
Author Schwetz, T.; Tortola, M.; Valle, J.W.F.
Title (down) Where we are on theta(13): addendum to 'Global neutrino data and recent reactor fluxes: status of three-flavor oscillation parameters' Type Journal Article
Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 13 Issue Pages 109401 - 5pp
Keywords
Abstract In this addendum to Schwetz et al (2011 New J. Phys. 13 063004), we consider the recent results from long-baseline nu(mu) -> nu(e) searches at the Tokai to Kamioka (T2K) and Main Injector Neutrino Oscillation Search (MINOS) experiments and investigate their implications for the mixing angle theta(13) and the leptonic Dirac CP phase delta. By combining the 2.5 sigma indication for a nonzero value of theta(13) coming from the T2K data with global neutrino oscillation data, we obtain a significance for theta(13) > 0 of about 3 sigma with best fit points sin(2) theta(13) = 0.013 (0.016) for normal (inverted) neutrino mass ordering. These results depend somewhat on assumptions concerning the analysis of reactor neutrino data.
Address [Schwetz, T] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000296664700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 801
Permanent link to this record
 

 
Author Chen, P.; Ding, G.J.; Rojas, A.D.; Vaquera-Araujo, C.A.; Valle, J.W.F.
Title (down) Warped flavor symmetry predictions for neutrino physics Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 007 - 27pp
Keywords Quark Masses and SM Parameters; Neutrino Physics; Discrete and Finite Symmetries
Abstract A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Delta(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.
Address [Chen, Peng; Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000367831200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2518
Permanent link to this record