|   | 
Details
   web
Records
Author Muñoz, V.; Takhistov, V.; Witte, S.J.; Fuller, G.M.
Title (up) Exploring the origin of supermassive black holes with coherent neutrino scattering Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 020 - 16pp
Keywords dark matter detectors; massive stars; neutrino astronomy; neutrino detectors
Abstract Collapsing supermassive stars (M greater than or similar to 3 x 10(4) M-circle dot) at high redshifts can naturally provide seeds and explain the origin of the supermassive black holes observed in the centers of nearly all galaxies. During the collapse of supermassive stars, a burst of non-thermal neutrinos is generated with a luminosity that could greatly exceed that of a conventional core collapse supernova explosion. In this work, we investigate the extent to which the neutrinos produced in these explosions can be observed via coherent elastic neutrino-nucleus scattering (CEvNS). Large scale direct dark matter detection experiments provide particularly favorable targets. We find that upcoming O(100) tonne-scale experiments will be sensitive to the collapse of individual supermassive stars at distances as large as O(10) Mpc.
Address [Munoz, Victor; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: victor.manuel.munoz@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000765985200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5159
Permanent link to this record
 

 
Author Arguelles, C.A.; Muñoz, V.; Shoemaker, I.M.; Takhistov, V.
Title (up) Hadrophilic light dark matter from the atmosphere Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 833 Issue Pages 137363 - 6pp
Keywords
Abstract Light sub-GeV dark matter (DM) constitutes an underexplored target, beyond the optimized sensitivity of typical direct DM detection experiments. We comprehensively investigate hadrophilic light DM produced from cosmic-ray collisions with the atmosphere. The resulting relativistic DM, originating from meson decays, can be efficiently observed in variety of experiments, such as XENON1T. We include for the first time decays of eta, eta' and K+ mesons, leading to improved limits for DM masses above few hundred MeV. We incorporate an exact treatment of the DM attenuation in Earth and demonstrate that nuclear form factor effects can significantly impact the resulting testable DM parameter space. Further, we establish projections for upcoming experiments, such as DARWIN, over a wide range of DM masses below the GeV scale.
Address [Arguelles, Carlos A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: carguelles@fas.harvard.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000865640700036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5388
Permanent link to this record
 

 
Author Arguelles, C.A.; Kelly, K.J.; Muñoz, V.M.
Title (up) Millicharged particles from the heavens: single- and multiple-scattering signatures Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 099 - 34pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract For nearly a century, studying cosmic-ray air showers has driven progress in our understanding of elementary particle physics. In this work, we revisit the production of millicharged particles in these atmospheric showers and provide new constraints for XENON1T and Super-Kamiokande and new sensitivity estimates of current and future detectors, such as JUNO. We discuss distinct search strategies, specifically studies of single-energy-deposition events, where one electron in the detector receives a relatively large energy transfer, as well as multiple-scattering events consisting of (at least) two relatively small energy depositions. We demonstrate that these atmospheric search strategies especially the multiple-scattering signature – provide significant room for improvement beyond existing searches, in a way that is complementary to anthropogenic, beam-based searches for MeV-GeV millicharged particles. Finally, we also discuss the implementation of a Monte Carlo simulation for millicharged particle detection in large-volume neutrino detectors, such as IceCube.
Address [Arguelles, Carlos A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: carguelles@fas.harvard.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000718091700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5038
Permanent link to this record
 

 
Author Coloma, P.; Hernandez, P.; Muñoz, V.; Shoemaker, I.M.
Title (up) New constraints on heavy neutral leptons from Super-Kamiokande data Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 3 Pages 235 - 7pp
Keywords
Abstract Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neutrino detectors. We perform a search for these long-lived particles using Super-Kamiokande multi-GeV neutrino data and derive stringent limits on the mixing with electron, muon and tau neutrinos as a function of the long-lived particle mass. We also present the limits on the branching ratio versus lifetime plane, which are helpful in determining the constraints in non-minimal models where the heavy neutral leptons have new interactions with the Standard Model.
Address [Coloma, P.; Hernandez, P.; Munoz, V.] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: pilar.coloma@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000531858300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4394
Permanent link to this record
 

 
Author Arguelles, C.A.; Coloma, P.; Hernandez, P.; Muñoz, V.
Title (up) Searches for atmospheric long-lived particles Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 190 - 34pp
Keywords Beyond Standard Model; Neutrino Physics; Solar and Atmospheric Neutrinos
Abstract Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra U(1) gauge symmetry, and a combination of both in a U(1)(B-L) model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.
Address [Arguelles, C.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000518622800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4323
Permanent link to this record