|   | 
Details
   web
Records
Author Bombacigno, F.; Boudet, S.; Olmo, G.J.; Montani, G.
Title (up) Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 12 Pages 124031
Keywords
Abstract We extend the notion of the Nieh-Yan invariant to generic metric-affine geometries, where both torsion and nonmetricity are taken into account. Notably, we show that the properties of projective invariance and topologicity can be independently accommodated by a suitable choice of the parameters featuring this new Nieh-Yan term. We then consider a special class of modified theories of gravity able to promote the Immirzi parameter to a dynamical scalar field coupled to the Nieh-Yan form, and we discuss in more detail the dynamics of the effective scalar tensor theory stemming from such a revised theoretical framework. We focus, in particular, on cosmological Bianchi I models and we derive classical solutions where the initial singularity is safely removed in favor of a big bounce, which is ultimately driven by the nonminimal coupling with the Immirzi field. These solutions, moreover, turn out to be characterized by finite time singularities, but we show that such critical points do not spoil the geodesic completeness and wave regularity of these spacetimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000661819200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4870
Permanent link to this record
 

 
Author Schiavone, T.; Montani, G.; Bombacigno, F.
Title (up) f(R) gravity in the Jordan frame as a paradigm for the Hubble tension Type Journal Article
Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 522 Issue 1 Pages L72-L77
Keywords supernovae: general; galaxies: distances and redshifts; cosmological parameters; dark energy; cosmology: theory
Abstract We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z less than or similar to 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.
Address [Schiavone, Tiziano] Univ Pisa, Dept Phys Fermi, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy, Email: tschiavone@fc.ul.pt
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:001066034100015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5672
Permanent link to this record
 

 
Author Bombacigno, F.; Boudet, S.; Montani, G.
Title (up) Generalized Ashtekar variables for Palatini f(R) models Type Journal Article
Year 2021 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 963 Issue Pages 115281 - 21pp
Keywords
Abstract We consider special classes of Palatini f(R) theories, featured by additional Loop Quantum Gravity inspired terms, with the aim of identifying a set of modified Ashtekar canonical variables, which still preserve the SU(2) gauge structure of the standard theory. In particular, we allow for affine connection to be endowed with torsion, which turns out to depend on the additional scalar degree affecting Palatini f( R) gravity, and in this respect we successfully construct a novel Gauss constraint. We analyze the role of the additional scalar field, outlining as it acquires a dynamical character by virtue of a non vanishing Immirzi parameter, and we describe some possible effects on the area operator stemming from such a revised theoretical framework. Finally, we compare our results with earlier studies in literature, discussing differences between metric and Palatini approaches. It is worth noting how the Hamiltonian turns out to be different in the two cases. The results can be reconciled when the analysis is performed in the Einstein frame.
Address [Bombacigno, Flavio] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: flavio.bombacigno@ext.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000613579500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4706
Permanent link to this record
 

 
Author Moretti, F.; Bombacigno, F.; Montani, G.
Title (up) Gravitational Landau damping for massive scalar modes Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 12 Pages 1203 - 9pp
Keywords
Abstract We establish the possibility of Landau damping for gravitational scalar waves which propagate in a non-collisional gas of particles. In particular, under the hypothesis of homogeneity and isotropy, we describe the medium at the equilibrium with a Juttner-Maxwell distribution, and we analytically determine the damping rate from the Vlasov equation. We find that damping occurs only if the phase velocity of the wave is subluminal throughout the propagation within the medium. Finally, we investigate relativistic media in cosmological settings by adopting numerical techniques.
Address [Moretti, Fabio; Montani, Giovanni] Sapienza Univ Rome, Phys Dept, Ple Aldo Moro 5, I-00185 Rome, Italy, Email: fabio.moretti@uniroma1.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000615196900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4707
Permanent link to this record
 

 
Author Moretti, F.; Del Prete, M.; Montani, G.
Title (up) Linear analysis of the gravitational beam-plasma instability Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 6 Pages 486 - 16pp
Keywords
Abstract We investigate the well-known phenomenon of the beam-plasma instability in the gravitational sector when a fast population of particles interacts with the massive scalar mode of a Horndeski theory of gravity, resulting in linear growth of the latter amplitude. Following the approach used in the standard electromagnetic case, we start from the dielectric representation of the gravitational plasma, as introduced in a previous analysis of the Landau damping for the scalar Horndeski mode. We then set up the modified Vlasov-Einstein equation, using a Dirac delta function to describe the fast beam distribution. We thus provide an analytical expression for the dispersion relation, and we demonstrate the existence of a nonzero growth rate for the linear evolution of the Horndeski scalar mode. A numerical investigation is then performed with a trapezoidal beam distribution function, which confirms the analytical results and allows us to demonstrate how the growth rate decreases as the beam spread increases.
Address [Moretti, Fabio] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, IFIC, Valencia 46100, Spain, Email: fabio.moretti@ext.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001005587700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5570
Permanent link to this record