|   | 
Details
   web
Records
Author Dias, J.M.; Debastiani, V.R.; Roca, L.; Sakai, S.; Oset, E.
Title (up) Binding of the BD(D)over-bar and BDD systems Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 9 Pages 094007 - 6pp
Keywords
Abstract We study theoretically the BD (D) over bar and BDD systems to see if they allow for possible bound or resonant states. The three-body interaction is evaluated implementing the fixed center approximation to the Faddeev equations which considers the interaction of a D or (D) over bar particle with the components of a BD cluster, previously proved to form a bound state. We find an I(J(P)) = 1/2(0(-)) bound state for the BD (D) over bar system at an energy around 8925-8985 MeV within uncertainties, which would correspond to a bottom hidden-charm meson. In contrast, for the BDD system, which would be bottom double-charm and hence manifestly exotic, we have found hints of a bound state in the energy region 8935-8985 MeV, but the results are not stable under the uncertainties of the model, and we cannot assure, nor rule out, the possibility of a BDD three-body state.
Address [Dias, J. M.; Debastiani, V. R.; Sakai, S.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Apartado 22085, Valencia 46071, Spain, Email: jorgivan.morais@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000414959300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3359
Permanent link to this record
 

 
Author Ikeno, N.; Dias, J.M.; Liang, W.H.; Oset, E.
Title (up) chi(c1) decays into a pseudoscalar meson and a vector-vector molecule Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 11 Pages 114011 - 7pp
Keywords
Abstract We evaluate ratios of the chi(c1) decay rates to eta (eta', K-) and one of the f(0) (1370), f(0) (1710), f(2) (1270), f(2)'(1525), K-2*(1430) resonances, which in the local hidden gauge approach are dynamically generated from the vector-vector interaction. With the simple assumption that the chi(c1) is a singlet of SU(3), and the input from the study of these resonances as vector-vector molecular states, we describe the experimental ratio B(chi(c1)-> eta f(2) (1270))/B(chi(c1) -> eta'f(2)' (1525)) and make predictions for six more ratios that can be tested in future experiments.
Address [Ikeno, Natsumi; Dias, Jorgivan M.; Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: ikeno@tottori-u.ac.jp;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000501487500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4219
Permanent link to this record
 

 
Author Dai, L.R.; Dias, J.M.; Oset, E.
Title (up) Disclosing D* (D)over bar* molecular states in the B-c(-) -> pi(-) J/psi omega decay Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 3 Pages 210 - 7pp
Keywords
Abstract We study the B-c(-) -> pi(-) J/omega and B-c(-) -> pi(-) D* (D) over bar* reactions and show that they are related by the presence of two resonances, the X(3940) and X(3930), that are of molecular nature and couple most strongly to D* (D) over bar*, but also to J/psi omega. Because of that, in the J/psi omega mass distribution we find a cusp with large strength at the D* (D) over bar* threshold and predict the ratio of strengths between the peak of the cusp and the maximum of the D* (D) over bar* distribution close to D* (D) over bar* threshold, which are distinct features of the molecular nature of these two resonances.
Address [Dai, L. R.] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: dailr@lnnu.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000427621300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3521
Permanent link to this record
 

 
Author Dias, J.M.; Debastiani, V.R.; Xie, J.J.; Oset, E.
Title (up) Doubly charmed Xi(cc) molecular states from meson-baryon interaction Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 9 Pages 094017 - 11pp
Keywords
Abstract Stimulated by the new experimental LHCb findings associated with the Omega(c) states, some of which we have described in a previous work as being dynamically generated through meson-baryon interaction, we have extended this approach to make predictions for new Xi(cc) molecular states in the C = 2, S = 0, and I = 1/2 sector. These states manifest themselves as poles in the solution of the Bethe-Salpeter equation in coupled channels. The kernels of this equation were obtained using general Lagrangians coming from the hidden local gauge symmetry or massive Yang-Mills theory, and the interactions are dominated by the exchange of light vector mesons. The extension of this approach to the heavy sector stems from the realization that the dominant interaction corresponds to having the heavy quarks as spectators, which implies the preservation of the heavy quark symmetry. As a result, we get several states: three states from the pseudoscalar meson-baryon interaction with J(P) = 1/2(-), and masses around 3840, 4080 and 4090 MeV, and two at 3920 and 4150 MeV for J(P) = 3/2(-). Furthermore, from the vector meson-baryon interaction we get three states degenerate with J(P) 1/2(-) and 3/2(-) from 4220 MeV to 4290 MeV, and two more states around 4280 and 4370 MeV, degenerate with J(P) = 1/2(-), 3/2(-), and 5/2(-).
Address [Dias, J. M.; Debastiani, V. R.; Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China, Email: jdias@if.usp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000451000200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3816
Permanent link to this record
 

 
Author Dias, J.M.; Navarra, F.S.; Nielsen, M.; Oset, E.
Title (up) f(0)(980) production in D-s(+)-> pi(+) pi(+) pi(-) and D-s(+) -> pi(+) K+ K- decays Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 9 Pages 096002 - 8pp
Keywords
Abstract We study the D-s(+)-> pi(+) pi(+) pi(-) and D-s(+) -> pi(+) K+ K- decays adopting a mechanism in which the D-s(+) meson decays weakly into a pi+ and a q (q) over bar component, which hadronizes into two pseudoscalar mesons. The final state interaction between these two pseudoscalar mesons is taken into account by using the chiral unitary approach in coupled channels, which gives rise to the f(0)(980) resonance. Hence, we obtain the invariant mass distributions of the pairs pi(+) pi(-) and K+ K- after the decay of that resonance and compare our theoretical amplitudes with those available from the experimental data. Our results are in a fair agreement with the shape of these data, within large experimental uncertainty, and a f(0)(980) signal is seen in both the pi(+) pi(-) and K+ K- distributions. Predictions for the relative size of pi(+) pi(-) and K+ K- distributions are made.
Address [Dias, J. M.; Navarra, F. S.; Nielsen, M.] Univ Sao Paulo, Inst Fis, CP 66318, BR-05389970 Sao Paulo, SP, Brazil, Email: jdias@if.usp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000386896900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2843
Permanent link to this record