|   | 
Details
   web
Records
Author Arbelaez, C.; Cepedello, R.; Fonseca, R.M.; Hirsch, M.
Title (up) (g-2) anomalies and neutrino mass Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 7 Pages 075005 - 14pp
Keywords
Abstract Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000576053400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4557
Permanent link to this record
 

 
Author Arbelaez, C.; Hirsch, M.; Restrepo, D.
Title (up) Fermionic triplet dark matter in an SO(10)-inspired left-right model Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 9 Pages 095034 - 9pp
Keywords
Abstract We study a left right (LR) extension of the Standard Model (SM) where the Dark Matter(DM) candidate is composed of a set of fermionic Majorana triplets. The DM is stabilized by a remnant Z(2) symmetry from the breaking of the LR group to the SM. Two simple scenarios where the DM particles plus a certain set of extra fields lead to gauge coupling unification with a low LR scale are explored. The constraints from relic density and predictions for direct detection are discussed for both scenarios. The first scenario with a SUd(2)(R) vectorlike fermion triplet contains a DM candidate which is almost unconstrained by current direct detection experiments. The second scenario, with an additional SU(2)R triplet, opens up a scalar portal leading to direct detection constraints which are similar to collider limits for right gauge bosons. The DM parameter space consistent with phenomenological requirements can also lead to successful gauge coupling unification in a SO(10) setup.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@.usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000402471800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3154
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Helo, J.C.; Hirsch, M.; Kovalenko, S.
Title (up) How many 1-loop neutrino mass models are there? Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 023 - 29pp
Keywords Other Weak Scale BSM Models; Models for Dark Matter; Neutrino Interactions
Abstract It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000835685500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5320
Permanent link to this record
 

 
Author Arbelaez, C.; Romao, J.C.; Hirsch, M.; Malinsky, M.
Title (up) LHC-scale left-right symmetry and unification Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 3 Pages 035002 - 19pp
Keywords
Abstract We construct a comprehensive list of nonsupersymmetric standard model extensions with a low-scale left-right (LR)-symmetric intermediate stage that may be obtained as simple low-energy effective theories within a class of renormalizable SO(10) grand unified theories. Unlike the traditional “minimal” LR models many of our example settings support a perfect gauge coupling unification even if the LR scale is in the LHC domain at a price of only (a few copies of) one or two types of extra fields pulled down to the TeV-scale ballpark. We discuss the main aspects of a potentially realistic model building conforming the basic constraints from the quark and lepton sector flavor structure, proton decay limits, etc. We pay special attention to the theoretical uncertainties related to the limited information about the underlying unified framework in the bottom-up approach, in particular, to their role in the possible extraction of the LR-breaking scale. We observe a general tendency for the models without new colored states in the TeV domain to be on the verge of incompatibility with the proton stability constraints.
Address [Arbelaez, Carolina; Romao, Jorge C.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: carolina@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000331878400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1703
Permanent link to this record
 

 
Author Arbelaez, C.; Cottin, G.; Helo, J.C.; Hirsch, M.
Title (up) Long-lived charged particles and multilepton signatures from neutrino mass models Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 9 Pages 095033 - 13pp
Keywords
Abstract Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Av Espana 1680,Casilla 110-5, Valparaiso 2340000, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000535451000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4403
Permanent link to this record