|   | 
Details
   web
Records
Author Arnalte-Mur, P.; Labatie, A.; Clerc, N.; Martinez, V.J.; Starck, J.L.; Lachieze-Rey, M.; Saar, E.; Paredes, S.
Title (down) Wavelet analysis of baryon acoustic structures in the galaxy distribution Type Journal Article
Year 2012 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 542 Issue Pages A34 - 11pp
Keywords large-scale structure of Universe; distance scale; galaxies: cluster: general; methods: data analysis; methods: statistical
Abstract Context. Baryon acoustic oscillations (BAO) are imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. Aims. The BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. We present a new method to detect the real-space structures associated with BAO. These baryon acoustic structures are spherical shells of relatively small density contrast, surrounding high density central regions. Methods. We design a specific wavelet adapted to search for shells, and exploit the physics of the process by making use of two different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new statistic when applied to the Lambda – cold dark matter (Lambda CDM) model, using an analytical approximation to the transfer function. We confirm the reliability and stability of our method by using cosmological N-body simulations from the MareNostrum Institut de Ciencies de l'Espai (MICE). Results. We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use the “main” catalogue to trace the shells, and the luminous red galaxies (LRG) as tracers of the high density central regions. Using this new method, we detect, with a high significance, that the LRG in our sample are preferentially located close to the centres of shell-like structures in the density field, with characteristics similar to those expected from BAO. We show that stacking selected shells, we can find their characteristic density profile. Conclusions. We delineate a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO phenomenon can be studied in detail by examining those shells.
Address [Arnalte-Mur, P.; Martinez, V. J.] Univ Valencia, Astron Observ, Valencia 46071, Spain, Email: pablo.arnalte-mur@durham.ac.uk
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000305803300021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1088
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Gnedin, N.Y.; Mena, O.
Title (down) Warm Dark Matter and Cosmic Reionization Type Journal Article
Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 852 Issue 2 Pages 139 - 7pp
Keywords cosmology: theory; galaxies: formation; intergalactic medium; large-scale structure of universe; methods: numerical
Abstract In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3. keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn-Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn-Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.
Address [Villanueva-Domingo, Pablo; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: gnedin@fnal.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000422865600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3455
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F.
Title (down) Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories Type Journal Article
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 667 Issue Pages A36 - 12pp
Keywords methods; data analysis; gamma rays; general
Abstract Context. Ground-based gamma-ray astronomy is still a rather young field of research, with strong historical connections to particle physics. This is why most observations are conducted by experiments with proprietary data and analysis software, as is usual in the particle physics field. However, in recent years, this paradigm has been slowly shifting toward the development and use of open-source data formats and tools, driven by upcoming observatories such as the Cherenkov Telescope Array (CTA). In this context, a community-driven, shared data format (the gamma-astro-data-format, or GADF) and analysis tools such as Gammapy and ctools have been developed. So far, these efforts have been led by the Imaging Atmospheric Cherenkov Telescope community, leaving out other types of ground-based gamma-ray instruments. Aims. We aim to show that the data from ground particle arrays, such as the High-Altitude Water Cherenkov (HAWC) observatory, are also compatible with the GADF and can thus be fully analyzed using the related tools, in this case, Gammapy. Methods. We reproduced several published HAWC results using Gammapy and data products compliant with GADF standard. We also illustrate the capabilities of the shared format and tools by producing a joint fit of the Crab spectrum including data from six different gamma-ray experiments. Results. We find excellent agreement with the reference results, a powerful confirmation of both the published results and the tools involved. Conclusions. The data from particle detector arrays such as the HAWC observatory can be adapted to the GADF and thus analyzed with Gammapy. A common data format and shared analysis tools allow multi-instrument joint analysis and effective data sharing. To emphasize this, a sample of Crab nebula event lists is made public with this paper. Because of the complementary nature of pointing and wide-field instruments, this synergy will be distinctly beneficial for the joint scientific exploitation of future observatories such as the Southern Wide-field Gamma-ray Observatory and CTA.
Address [Albert, A.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: laura.olivera-nieto@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000879223700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5408
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title (down) Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 11 Pages T11004 - 61pp
Keywords Analysis and statistical methods; Particle identification methods
Abstract Measurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analyses are subject to 'fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-lepton selection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particle interactions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods. Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance.
Address [Amerl, M.; Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001116977400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5884
Permanent link to this record
 

 
Author ANTARES Collaboration (Bhandari, S. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title (down) The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up Type Journal Article
Year 2018 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 475 Issue 2 Pages 1427-1446
Keywords radiation mechanisms: general; methods: data analysis; methods: observational; surveys; intergalactic medium; radio continuum: general
Abstract We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 +/- 0.3 pc cm(-3)) detected to date. Three of the FRBs have high dispersion measures (DM > 1500 pc cm(-3)), favouring a scenario where the DMis dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences > 2 Jy ms is alpha = – 2.2(-1.2)(+0.6) and still consistent with a Euclidean distribution (alpha = -3/2). We also find that the all-sky rate is 1.7(-0.9)(+1.5) x 10(3)FRBs/(4 pi sr)/day above similar to 2 Jy ms and there is currently no strong evidence for a latitude- dependent FRB sky rate.
Address [Bhandari, S.; Keane, E. F.; Barr, E. D.; Jameson, A.; Petroff, E.; Bailes, M.; Flynn, C.; Jankowski, F.; Krishnan, V. Venkatraman; Morello, V.; van Straten, W.; Andreoni, I.; Cooke, J.; Pritchard, T.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Mail H30,POB 218, Hawthorn, Vic 3122, Australia, Email: shivanibhandari58@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000427345900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3518
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Zornoza, J.D.; Zuñiga, J.
Title (down) The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope Type Journal Article
Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 482 Issue 1 Pages 184-193
Keywords acceleration of particles; neutrinos; astroparticle physics; radio continuum: transients; methods: data analysis
Abstract In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called fast radio bursts (FRBs) is still a mystery, despite the growing observational efforts made by various multiwavelength and multimessenger facilities. To date, many models have been proposed to explain FRBs, but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, we assess whether hadronic processes may occur in the vicinity of the FRB source. If they do, FRBs may contribute to the high-energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures was carried out using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, that are spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs were selected and no coincident neutrino candidate was observed. Upper limits on the per-burst neutrino fluence were derived using a power-law spectrum, dN/DE nu proportional to E-nu(-gamma), for the incoming neutrino flux, assuming spectral indexes gamma = 1.0, 2.0, 2.5. Finally, the neutrino energy was constrained by computing the total energy radiated in neutrinos, assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released were derived from the associated null results.
Address [Turpin, D.] Chinese Acad Sci, Natl Astron Observ, Key Lab Space Astron & Technol, Beijing 100101, Peoples R China, Email: dornic@cppm.in2p3.fr;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000454575300014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3860
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title (down) The positioning system of the ANTARES Neutrino Telescope Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages T08002 - 20pp
Keywords Timing detectors; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Detector alignment and calibration methods (lasers, sources, particle-beams); Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases)
Abstract The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.
Address [Anton, G.; Eberl, T.; Enzenhoefer, A.; Folger, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Lahmann, R.; Meli, A.; Motz, H.; Neff, M.; Richardt, C.; Richter, R.; Roensch, K.; Schoeck, F.; Seitz, T.; Shanidze, R.; Spies, A.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: juergen.hoessl@physik.uni-erlangen.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000308869800043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1176
Permanent link to this record
 

 
Author ATLAS Tile Calorimeter Community (Abdallah, J. et al); Castillo Gimenez, V.; Costelo, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title (down) The optical instrumentation of the ATLAS Tile Calorimeter Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P01005 - 21pp
Keywords Calorimeters; Calorimeter methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
Address [Dawson, J.; Drake, G.; Guarino, V.; Hill, N.; LeCompte, T.; Nodulman, L.; Price, E.; Proudfoot, J.; Schlereth, J.; Stanek, R.; Underwood, D.] Argonne Natl Lab, Argonne, IL 60439 USA, Email: Tomas.Davidek@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320665400062 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1515
Permanent link to this record
 

 
Author Kasieczka, G. et al; Sanz, V.
Title (down) The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics Type Journal Article
Year 2021 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 84 Issue 12 Pages 124201 - 64pp
Keywords anomaly detection; machine learning; unsupervised learning; weakly supervised learning; semisupervised learning; beyond the standard model; model-agnostic methods
Abstract A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.
Address [Kasieczka, Gregor] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: gregor.kasieczka@uni-hamburg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000727698500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5039
Permanent link to this record
 

 
Author ATLAS Tile Calorimeter System (Abdallah, J. et al); Ferrer, A.; Fiorini, L.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Ruiz-Martinez, A.; Solans, C.A.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.
Title (down) The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1 Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages T10005 - 29pp
Keywords Detector alignment and calibration methods (lasers, sources, particle-beams); Calorimeters; Performance of High Energy Physics Detectors
Abstract This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.
Address [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus, Email: calvet@in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387876400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2860
Permanent link to this record