|   | 
Details
   web
Records
Author Candido, A.; Garcia, A.; Magni, G.; Rabemananjara, T.; Rojo, J.; Stegeman, R.
Title Neutrino structure functions from GeV to EeV energies Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 149 - 78pp
Keywords Deep Inelastic Scattering or Small-x Physics; Neutrino Interactions; Parton Distributions
Abstract The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q(2) less than or similar to few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies E-nu up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSF nu approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASER nu, SND@LHC, and the Forward Physics Facility. The NNSF nu determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.
Address [Candido, Alessandro] Univ Milan, Dipartimento Fis, Tif Lab, Via Celoria 16, I-20133 Milan, Italy, Email: alessandro.candido@mi.infn.it;
Corporate Author Thesis (down)
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992767300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5559
Permanent link to this record
 

 
Author Alvarez, M.; Cantero, J.; Czakon, M.; Llorente, J.; Mitov, A.; Poncelet, R.
Title NNLO QCD corrections to event shapes at the LHC Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 129 - 24pp
Keywords Higher-Order Perturbative Calculations; Specific QCD Phenomenology
Abstract In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.
Address [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: manuel.alvarez.estevez@cern.ch;
Corporate Author Thesis (down)
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992064600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5560
Permanent link to this record
 

 
Author Bonilla, C.; Herms, J.; Medina, O.; Peinado, E.
Title Discrete dark matter mechanism as the source of neutrino mass scales Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 078 - 23pp
Keywords Flavour Symmetries; Models for Dark Matter; Neutrino Mixing
Abstract The hierarchy in scale between atmospheric and solar neutrino mass splittings is investigated through two distinct neutrino mass mechanisms from tree-level and one-loop-level contributions. We demonstrate that the minimal discrete dark matter mechanism contains the ingredients for explaining this hierarchy. This scenario is characterized by adding new RH neutrinos and SU(2)-doublet scalars to the Standard Model as triplet representations of an A(4) flavor symmetry. The A(4) symmetry breaking, which occurs at the electroweak scale, leads to a residual DOUBLE-STRUCK CAPITAL Z(2) symmetry responsible for the dark matter stability and dictates the neutrino phenomenology. Finally, we show that to reproduce the neutrino mixing angles correctly, it is necessary to violate CP in the scalar potential.
Address [Bonilla, Cesar] Univ Catolica Norte, Dept Fis, Ave Angamos 0610,Casilla 1280, Antofagasta, Chile, Email: cesar.bonilla@ucn.cl;
Corporate Author Thesis (down)
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001007947500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5561
Permanent link to this record
 

 
Author Malabarba, B.B.; Khemchandani, K.P.; Martinez Torres, A.; Oset, E.
Title D1(2420) and its interactions with a kaon: Open charm states with strangeness Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 036016 - 12pp
Keywords
Abstract In this work we present an attempt to describe the X1(2900) found by the LHCb collaboration, in the experimental data on the invariant mass spectrum of D-K+, as a three-meson molecular state of the KpD over line system. We discuss that the interactions in all the subsystems are attractive in nature, with the pD over line interaction generating over line D1(2420) and the Kp resonating as K1(1270). We find that the system can form a three-body state but with a mass higher than that of X1(2900). We investigate the KpD system too, finding that the three-body dynamics generates an isoscalar state, which can be related to D*s1(2860), and an exotic isovector state. This latter state has a mass similar to that of the X0(2900) and X1(2900) states found by LHCb, but a very small width (similar to 7.4 +/- 0.9 MeV) and necessarily requires more than two quarks to describe its properties. We hope that our findings will encourage experimental investigations of the isovector KpD state. Finally, in the pursuit of finding a description for X1(2900), we study the K over line K*D* system where over line K*D* forms 0+, 1+, and 2+ states. We do not find a state that can be associated with X1(2900).
Address [Malabarba, Brenda B.; Torres, A. Martinez] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil, Email: brenda@if.usp.br;
Corporate Author Thesis (down)
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000989327600013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5562
Permanent link to this record
 

 
Author Martinez Torres, A.; Khemchandani, K.P.; Oset, E.
Title Theoretical study of the gamma d -> pi(0)eta d reaction Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 2 Pages 025202 - 24pp
Keywords
Abstract We have done a theoretical study of the gamma d -> pi(0)eta d reaction starting with a realistic model for the gamma N -> pi(0)eta N reaction that reproduces cross sections and polarization observables at low energies and involves the gamma N -> Delta(1700) -> eta Delta(1232) -> eta pi N-0 process. For the coherent reaction in the deuteron we considered the impulse approximation together with the rescattering of the pions and the eta on a different nucleon than the one where they are produced. We found this second mechanism very important since it helps share between two nucleons the otherwise large momentum transfer of the reaction. Other contributions to the gamma d -> pi(0)eta d reaction, involving the gamma N -> pi(+/-)pi N-0' process, followed by the rescattering of the pi(+/-) with another nucleon to give eta and a nucleon, have also been included. We find a natural explanation, tied to the dynamics of our model, for the shift of the eta-d mass distribution to lower invariant masses, and of the pi(0)-d mass distribution to larger invariant masses, compared to a phase space calculation. We also study theoretical uncertainties related to the large momenta of the deuteron wave function involved in the process as well as to the couplings present in the model. Striking differences are found with the experimental angular distribution and further theoretical investigations might be necessary.
Address [Torres, A. Martinez] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil, Email: amartine@if.usp.br;
Corporate Author Thesis (down)
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000981821500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5563
Permanent link to this record