|   | 
Details
   web
Records
Author Ayala, C.; Gonzalez, P.; Vento, V.
Title Heavy quark potential from QCD-related effective coupling Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 12 Pages 125002 - 12pp
Keywords general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia
Abstract We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es
Corporate Author Thesis (up)
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000388219700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2870
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Measurement of the ratio of branching fractions B(B-c(+) -> J/psi K+)/B(B-c(+) -> J/psi pi(+)) Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 153 - 15pp
Keywords Branching fraction; Hadron-Hadron scattering (experiments); QCD
Abstract The ratio of branching fractions R-K/pi = B (B-c(+) -> J/psi K+)/B(B-c(+) -> J/psi pi(+)) is measured with pp collision data collected by the LHCb experiment at centre-of-mass energies of 7TeV and 8TeV, corresponding to an integrated luminosity of 3 fb(-1). It is found to be R-K/pi = 0.079 +/- 0.007 +/- 0.003, where the first uncertainty is statistical and the second is systematic. This measurement is consistent with the previous LHCb result, while the uncertainties are significantly reduced.
Address [Archilli, F.; Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.; Vieira, D.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: jiesheng.yu@cern.ch
Corporate Author Thesis (up)
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000391734900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2942
Permanent link to this record
 

 
Author Ren, X.L.; Alvarez-Ruso, L.; Geng, L.S.; Ledwig, T.; Meng, J.; Vicente Vacas, M.J.
Title Consistency between SU(3) and SU(2) covariant baryon chiral perturbation theory for the nucleon mass Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 766 Issue Pages 325-333
Keywords Baryon chiral perturbation theory; Lattice QCD; Nucleon mass and sigma term
Abstract Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the 19low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order[1] is supported by comparing the effective parameters (the combinations of the 19couplings) with the corresponding low-energy constants in the SU(2) sector[2]. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.[2] that the SU(2) baryon chiral perturbation theory can be applied to study n(f) = 2 + 1lattice QCD simulations as long as the strange quark mass is close to its physical value.
Address [Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: lisheng.geng@buaa.edu.cn
Corporate Author Thesis (up)
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000396438300043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3003
Permanent link to this record
 

 
Author Zhou, B.; Sun, Z.F.; Liu, X.; Zhu, S.L.
Title Chiral corrections to the 1(-+) exotic meson mass Type Journal Article
Year 2017 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 41 Issue 4 Pages 043101 - 12pp
Keywords exotic mesons; hybrid state; lattice QCD
Abstract We first construct the effective chiral Lagrangians for the 1(-+) exotic mesons. With the infrared regularization scheme, we derive the one-loop infrared singular chiral corrections to the pi(1) (1600) mass explicitly. We investigate the variation of the different chiral corrections with the pion mass under two schemes. Hopefully, the explicit non-analytical chiral structures will be helpful for the chiral extrapolation of lattice data from the dynamical lattice QCD simulation of either the exotic light hybrid meson or the tetraquark state.
Address [Zhou, Bin] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: binzhou@pku.edu.cn;
Corporate Author Thesis (up)
Publisher Chinese Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000400124800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3106
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Study of the D(0)p amplitude in Lambda(0)(b) -> D(0)p pi(-) decays Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 030 - 43pp
Keywords B physics; Charm physics; Hadron-Hadron scattering (experiments); QCD; Spectroscopy
Abstract An amplitude analysis of the decay Lambda(0)(b) -> D(0)p pi(-) is performed in the part of the phase space containing resonances in the D(0)p channel. The study is based on a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collisions recorded by the LHCb experiment. The spectrum of excited Lambda(+)(c) states that decay into D(0)p is studied. The masses, widths and quantum numbers of the Lambda(c)(2880)(+) and Lambda(c) (2940)(+) resonances are measured. The constraints on the spin and parity for the Lambda(c)(2940)(+) state are obtained for the first time. A near-threshold enhancement in the D(0)p amplitude is investigated and found to be consistent with a new resonance, denoted the Lambda(c) (2860)(+), of spin 3/2 and positive parity.
Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; Dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, L.] CBPF, Rio De Janeiro, Brazil, Email: Anton.Poluektov@cern.ch
Corporate Author Thesis (up)
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000401073500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3146
Permanent link to this record