|   | 
Details
   web
Records
Author de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M.
Title Cosmological radiation density with non-standard neutrino-electron interactions Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 820 Issue Pages 136508 - 9pp
Keywords Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations
Abstract Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.
Address [de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;
Corporate Author Thesis (up)
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000713101800031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5023
Permanent link to this record
 

 
Author Gariazzo, S.; de Salas, P.F.; Pisanti, O.; Consiglio, R.
Title PArthENoPE revolutions Type Journal Article
Year 2022 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 271 Issue Pages 108205 - 13pp
Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics
Abstract This paper presents the main features of a new and updated version of the program PArthENoPE, which the community has been using for many years for computing the abundances of light elements produced during Big Bang Nucleosynthesis. This is the third release of the PArthENoPE code, after the 2008 and the 2018 ones, and will be distributed from the code's website, http://parthenope.na.infn.it. Apart from minor changes, the main improvements in this new version include a revisited implementation of the nuclear rates for the most important reactions of deuterium destruction, H-2(p,gamma) He-3, H-2(d, n)He-3 and H-2(d, p)H-3, and a re-designed GUI, which extends the functionality of the previous one. The new GUI, in particular, supersedes the previous tools for running over grids of parameters with a better management of parallel runs, and it offers a brand-new set of functions for plotting the results. Program summary Program title: PArthENoPE 3.0 CPC Library link to program files: https://doi.org/10.17632/wygr7d8yt9.2 Developer's repository link: http://parthenope.na.infn.it Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems, Python GUI for running and plotting Journal reference of previous version: Comput. Phys. Commun. 233 (2018) 237-242 Does the new version supersede the previous version?: Yes Reasons for the new version: Update of the physics and improvements in the GUI Summary of revisions: Update of the physics implemented in the Fortran code and improvements in the GUI functionalities, in particular new plotting functions.
Address [Gariazzo, S.] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: pisanti@na.infn.it
Corporate Author Thesis (up)
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000720461800020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5027
Permanent link to this record
 

 
Author Hagstotz, S.; de Salas, P.F.; Gariazzo, S.; Pastor, S.; Gerbino, M.; Lattanzi, M.; Vagnozzi, S.; Freese, K.
Title Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 12 Pages 123524 - 20pp
Keywords
Abstract We present a consistent framework to set limits on properties of light sterile neutrinos coupled to all three active neutrinos using a combination of the latest cosmological data and terrestrial measurements from oscillations, beta-decay, and neutrinoless double-beta-decay (0 nu beta beta) experiments. We directly constrain the full 3 + 1 active-sterile mixing matrix elements vertical bar U-alpha 4 vertical bar(2) , with alpha is an element of (e,mu,tau), and the mass-squared splitting Delta m(41)(2) (math) m(4)(2) – m(1)(2). We find that results for a 3 + 1 case differ from previously studied 1 + 1 scenarios where the sterile is coupled to only one of the neutrinos, which is largely explained by parameter space volume effects. Limits on the mass splitting and the mixing matrix elements are currently dominated by the cosmological datasets. The exact results are slightly prior dependent, but we reliably find all matrix elements to be constrained below vertical bar U-alpha 4 vertical bar(2) less than or similar to 10(-3) . Short-baseline neutrino oscillation hints in favor of eV-scale sterile neutrinos arc in serious tension with these bounds, irrespective of prior assumptions. We also translate the bounds from the cosmological analysis into constraints on the parameters probed by laboratory searches, such as m(beta) or m(beta)(beta), the effective mass parameters probed by beta-decay and 0 nu beta beta searches, respectively. When allowing for mixing with a light sterile neutrino, cosmology leads to upper bounds of m(beta) < 0.09 eV and m(beta)(beta )< 0.07 eV at 95% CL, more stringent than the limits from current laboratory experiments.
Address [Hagstotz, Steffen; de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, Roslagstullsbacken 21A, SE-10691 Stockholm, Sweden, Email: steffen.hagstotz@fysik.su.se
Corporate Author Thesis (up)
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000730829500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5055
Permanent link to this record