toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bertolez-Martinez, T.; Arguelles, C.; Esteban, I.; Lopez-Pavon, J.; Martinez-Soler, I.; Salvado, J. url  doi
openurl 
  Title IceCube and the origin of ANITA-IV events Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 005 - 24pp  
  Keywords Cosmic Rays; Specific BSM Phenomenology  
  Abstract Recently, the ANITA collaboration announced the detection of new, unsettling upgoing Ultra-High-Energy (UHE) events. Understanding their origin is pressing to ensure success of the incoming UHE neutrino program. In this work, we study their internal consistency and the implications of the lack of similar events in IceCube. We introduce a generic, simple parametrization to study the compatibility between these two observatories in Standard Model-like and Beyond Standard Model scenarios: an incoming flux of particles that interact with Earth nucleons with cross section sigma, producing particle showers along with long-lived particles that decay with lifetime iota and generate a shower that explains ANITA observations. We find that the ANITA angular distribution imposes significant constraints, and when including null observations from IceCube only iota similar to 10(-3)-10(-2) s and sigma similar to 10(-33) -10(-32) cm(2) can explain the data. This hypothesis is testable with future IceCube data. Finally, we discuss a specific model that can realize this scenario. Our analysis highlights the importance of simultaneous observations by high-energy optical neutrino telescopes and new UHE radio detectors to uncover cosmogenic neutrinos or discover new physics.  
  Address [Bertolez-Martinez, Toni; Salvado, Jordi] Univ Barcelona, Dept Fis Quant & Astrofis, Diagonal 647, E-08028 Barcelona, Spain, Email: antoni.bertolez@fqa.ub.edu;  
  Corporate Author Thesis (down)  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001021483800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5589  
Permanent link to this record
 

 
Author AGATA Collaboration (Valiente-Dobon, J.J. et al); Perez-Vidal, R.M.; Blasco Miquel, J.; Civera, J.V.; Gadea, A. doi  openurl
  Title Conceptual design of the AGATA 2 pi array at LNL Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1049 Issue Pages 168040 - 14pp  
  Keywords AGATA spectrometer; LNL facility; gamma-ray tracking; Pulse shape analysis; PRISMA spectrometer; EUCLIDES detector; DANTE detector; TRACE detector; Plunger device  
  Abstract The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.  
  Address [Valiente-Dobon, J. J.; Goasduff, A.; Angelini, F.; Balogh, M.; Brugnara, D.; Cocconi, P.; Cogo, A.; Collado, J.; Ertoprak, A.; Galtarossa, F.; Gambalonga, A.; Gongora Servin, B.; Gottardo, A.; Gozzelino, A.; Gulmini, M.; Marchi, T.; Modanese, P.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Pilotto, E.; Raniero, W.; Rosso, D.; Scarpa, D.; Sedlak, M.; Toniolo, N.; Volpe, V.; Zago, L.; Zanon, I.; Allegrini, M. L.; Benini, D.; Biasotto, M.; Corradi, L.; De Angelis, G.; De Ruvo, L.; Fantinel, S.; Fioretto, E.; Minarello, A.; Stefanini, A. M.] INFN, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it  
  Corporate Author Thesis (down)  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001020811800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5590  
Permanent link to this record
 

 
Author n_TOF Collaboration (Patronis, N. et al); Babiano-Suarez, V.; Balibrea Correa, J.; Domingo-Pardo, C.; Ladarescu, I.; Lerendegui-Marco, J. doi  openurl
  Title Status report of the n_TOF facility after the 2nd CERN long shutdown period Type Journal Article
  Year 2023 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.  
  Volume 10 Issue 1 Pages 13 - 10pp  
  Keywords Neutron time of flight; Spallation target; Nuclear astrophysics; Neutron physics; Neutron induced fission; Neutron reactions  
  Abstract During the second long shutdown period of the CERN accelerator complex (LS2, 2019-2021), several upgrade activities took place at the nTOF facility. The most important have been the replacement of the spallation target with a next generation nitrogen-cooled lead target. Additionally, a new experimental area, at a very short distance from the target assembly (the NEAR Station) was established. In this paper, the core commissioning actions of the new installations are described. The improvement in the nTOF infrastructure was accompanied by several detector development projects. All these upgrade actions are discussed, focusing mostly on the future perspectives of the n_TOF facility. Furthermore, some indicative current and future measurements are briefly reported.  
  Address [Patronis, N.; Goula, S.; Eleme, Z.; Stamati, M. E.; Vagena, E.] Univ Ioannina, Ioannina, Greece, Email: nikolaos.patronis@cern.ch  
  Corporate Author Thesis (down)  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-7045 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001008786600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5591  
Permanent link to this record
 

 
Author Batail, L.; Davesne, D.; Peru, S.; Becker, P.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title A three-ranged Gogny interaction in touch with pion exchange: promising results to improve infinite matter properties Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue 7 Pages 173 - 11pp  
  Keywords  
  Abstract We suggest a new Gogny-type finite-range effective interaction including a third Gaussian in the central term. Based on simple arguments valid for an arbitrary radial form factor, the three ranges are obtained in connection with physical grounds, relating them to one-boson exchange interactions. Moreover, some parameters of the longest range are fixed through the G-matrix elements of the One Pion Exchange Potential. On top of giving a fairly good description of atomic nuclei properties comparable with other existing parametrisations, the resulting interaction leads to a remarkable improvement of some infinite matter properties that are relevant for astrophysical calculations.  
  Address [Batail, L.] Univ Libre Bruxelles, Inst Astron & Astrophys, CP 226,Blvd Triomphe, B-1050 Brussels, Belgium, Email: lysandra.batail@ulb.be;  
  Corporate Author Thesis (down)  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001037384800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5592  
Permanent link to this record
 

 
Author Real, D.; Calvo, D. doi  openurl
  Title Silicon Photomultipliers for Neutrino Telescopes Type Journal Article
  Year 2023 Publication Universe Abbreviated Journal Universe  
  Volume 9 Issue 7 Pages 326 - 14pp  
  Keywords silicon photomultipliers; neutrino telescopes; time to digital converters; electronics acquisition  
  Abstract Neutrino astronomy has opened a new window to the extreme Universe, entering into a fruitful era built upon the success of neutrino telescopes, which have already given a new step forward in this novel and growing field by the first observation of steady point-like sources already achieved by IceCube. Neutrino telescopes equipped with Silicon PhotoMultipliers (SiPMs) will significantly increase in number, because of their excellent time resolution and the angular resolution, and will be in better condition to detect more steady sources as well as the unexpected. The use of SiPMs represents a challenge to the acquisition electronics because of the fast signals as well as the high levels of dark noise produced by SiPMs. The acquisition electronics need to include a noise rejection scheme by implementing a coincidence filter between channels. This work discusses the advantages and disadvantages of using SiPMs for the next generation of neutrino telescopes, focusing on the possible developments that could help for their adoption in the near future.  
  Address [Real, Diego; Calvo, David] Univ Valencia, Inst Fis Corpuscular, CSIC, IFIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis (down)  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038900800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5593  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva