|   | 
Details
   web
Records
Author Delafosse, C. et al; Gadea, A.; Perez-Vidal, R.M.; Domingo-Pardo, C.
Title Pseudospin Symmetry and Microscopic Origin of Shape Coexistence in the Ni-78 Region: A Hint from Lifetime Measurements Type Journal Article
Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 121 Issue 19 Pages 192502 - 7pp
Keywords
Abstract Lifetime measurements of excited states of the light N = 52 isotones Kr-88, Se-86, and Ge-84 have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2; 2(+)-> 0(+)) and B(E2; 4(+)-> 2(+)) were obtained for the first time for the hard-to-reach 84Ge. While the B(E2; 2(+)-> 0(+) ) values of Kr-88, Se-86 saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g(7/2), 1h(11/2)) space of an inert Ni-78 core, the value obtained for Ge-84 largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N less than or similar to 49, extend beyond N = 50. The onset of collectivity at Z = 32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector rho field in shell-structure evolution.
Address [Delafosse, C.; Verney, D.; Marevic, P.; Gottardo, A.; Babo, M.; Franchoo, S.; Ibrahim, F.; Matea, I; Olivier, L.; Portail, C.; Stefan, I] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France, Email: verney@ipno.in2p3.fr
Corporate Author Thesis (up)
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000449791600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3800
Permanent link to this record
 

 
Author Kaya, L. et al; Gadea, A.
Title Millisecond 23/2(+) isomers in the N=79 isotones Xe-133 and Ba-135 Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 98 Issue 5 Pages 054312 - 16pp
Keywords
Abstract Detailed information on isomeric states in A approximate to 135 nuclei is exploited to shell-model calculations in the region northwest of doubly magic nucleus Sn-132. The N = 79 isotones Xe-133 and Ba-135 are studied after multinucleon transfer in the Xe-136 + Pb-208 reaction employing the high-resolution Advanced GAmma Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy and in a pulsed-beam experiment at the FN tandem accelerator of the University of Cologne Germany utilizing a Be-9 + Te-130 fusion-evaporation reaction at a beam energy of 40 MeV. Isomeric states are identified via delayed gamma-ray spectroscopy. Hitherto tentative excitation energy spin and parity assignments of the 2017-keV J(pi) = 23/2(+) isomer in Xe-133 are confirmed and a half-life of T-1/2 = 8.64(13) ms is measured. The 2388-keV state in Ba-135. is identified as a J(pi) = 23/2(+) isomer with a half-life of 1.06(4) ms. The new results show a smooth onset of isomeric J(pi) = 23/2(+) states along the N = 79 isotones and close a gap in the high-spin systematics towards the recently investigated J(pi) = 23/2(+) isomer in Nd-139. The resulting systematics of M2 reduced transition probabilities is discussed within the of the nuclear shell model. Latest large-scale shell-model calculations employing the SN100PN, GCN50:82, SN100-KTH and a realistic effective interaction reproduce the experimental findings generally well and give insight into the structure of the isomers.
Address [Kaya, L.; Vogt, A.; Reiter, P.; Mueller-Gatermann, C.; Arnswald, K.; Birkenbach, B.; Blazhev, A.; Droste, M.; Eberth, J.; Fransen, C.; Hadynska-Klek, K.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Lewandowski, L.; Rosiak, D.; Saed-Samii, N.; Seidlitz, M.; Weinert, M.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de
Corporate Author Thesis (up)
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000450549200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3809
Permanent link to this record
 

 
Author AGATA Collaboration (Kaya, L. et al); Gadea, A.
Title Identification of high-spin proton configurations in Ba-136 and Ba-137 Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 1 Pages 014301 - 19pp
Keywords
Abstract The high-spin structures of Ba-136 and Ba-137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba-136 is populated in a Xe-136 + U-238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be-9 + Te-130 fusion-evaporation reactions using the High-efficiency Observatory for gamma-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B-11 + Te-130 fusion-evaporation reaction utilizing the HORUS gamma-ray array. The level scheme above the J(pi) = 10(+) isomer in Ba-136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the E-x = 3707- and E-x = 4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te-132 and Xe-134 are characterized by high-energy 12(+) -> 10(+) transitions, the Ba-136 E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the J(pi) = 10(+) isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba-137. The new results close a gap along the high-spin structure of N < 82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.
Address [Kaya, L.; Vogt, A.; Reiter, P.; Mueller-Gatermann, C.; Blazhev, A.; Arnswald, K.; Birkenbach, B.; Droste, M.; Eberth, J.; Fransen, C.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Lewandowski, L.; Rosiak, D.; Saed-Samii, N.; Seidlitz, M.; Weinert, M.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de
Corporate Author Thesis (up)
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000454768000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3859
Permanent link to this record
 

 
Author Soderstrom, P.A. et al; Agramunt, J.; Egea, J.; Gadea, A.; Huyuk, T.
Title Neutron detection and gamma-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537 Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 916 Issue Pages 238-245
Keywords BC-501A; BC-537; Digital pulse-shape discrimination; Fast-neutron detection; Liquid scintillator; Neural networks
Abstract In this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and gamma rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher gamma-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of gamma rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same gamma-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.
Address [Soderstrom, P-A] ELI NP, Bucharest 077125, Romania, Email: par.anders@eli-np.ro
Corporate Author Thesis (up)
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000455016800033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3869
Permanent link to this record
 

 
Author Valiente-Dobon, J.J. et al; Egea, J.; Huyuk, T.; Gadea, A.; Aliaga, R.; Jurado-Gomez, M.L.; Perez-Vidal, R.M.
Title NEDA-NEutron Detector Array Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 927 Issue Pages 81-86
Keywords NEDA; Nuclear structure; Gamma-ray spectroscopy; Neutron detector; Liquid scintillator; Digital electronics; Neutron-gamma discrimination
Abstract The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with gamma-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-gamma discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1 pi was realised at GANIL. This manuscript reviews the various aspects of NEDA.
Address [Valiente-Dobon, J. J.; Jaworski, G.; Goasduff, A.; Egea, J.; Modamio, V; de Angelis, G.; Bissiato, E.; Carturan, S.; Cocconi, P.; Conventi, D.; Deltoro, J. M.; Hadynska-Klekn, K.; Illan, A.; Raggio, A.; Siciliano, M.; Zanon, I] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it
Corporate Author Thesis (up)
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000462142700010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3956
Permanent link to this record