|   | 
Details
   web
Records
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; King, M.; Mitsou, V.A.; Vento, V.; Vives, O.
Title Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 067 - 25pp
Keywords Exotics; Hadron-Hadron scattering (experiments); Particle and resonance production
Abstract The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area similar to 18 m(2), sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb(-1). No magnetic charge exceeding 0.5g(D) (where g(D) is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV <= m <= 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g(D) <= vertical bar g vertical bar <= 6g(D), and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g(D) <= vertical bar g vertical bar <= 4g(D). Under the assumption of Drell-Yan cross sections, mass limits are derived for vertical bar g vertical bar = 2g(D) and vertical bar g vertical bar = 3g(D) for the first time at the LHC, surpassing the results from previous collider experiments.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: philippe.mermod@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000391754500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2927
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.
Title A correlated-cluster model and the ridge phenomenon in hadron-hadron collisions Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 766 Issue Pages 170-176
Keywords pp interactions at LHC; Heavy-ion collisions at RHIC and LHC; Ridge phenomenon; Correlated clusters; Two-particle azimuthal and rapidity correlations
Abstract A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.
Address [Sanchis-Lozano, Miguel-Angel] Ctr Mixto Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000396438300025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3002
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title A method to stabilise the performance of negatively fed KM3NeT photomultipliers Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P12014 - 12pp
Keywords Instrument optimisation; Large detector systems for particle and astroparticle physics; Neutrino detectors; Photon detectors for UV, visible and IR photons (gas) (gas-photocathodes, solid-photocathodes)
Abstract The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.
Address [Albert, A.; Belias, A.; Biagioni, A.; Capone, A.; Coleiro, A.; Cosquer, A.; Creusot, A.; D'Amico, A.; D'Onofrio, A.; Enzenhofer, A.; Grmek, A.; Heijboer, A.; Kappes, A.; Kouchner, A.; Leisos, A.; Miraglia, A.] Accademia Navale Livorno, I-57100 Livorno, Italy, Email: spokesperson@km3net.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000395732500014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3041
Permanent link to this record
 

 
Author Kim, J.; Ko, P.; Park, W.I.
Title Higgs-portal assisted Higgs inflation with a sizeable tensor-to-scalar ratio Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 003 - 16pp
Keywords inflation; particle physics – cosmology connection; physics of the early universe
Abstract We show that the Higgs portal interactions involving extra dark Higgs field can save generically the original Higgs inflation of the standard model (SM) from the problem of a deep non-SM vacuum in the SM Higgs potential. Specifically, we show that such interactions disconnect the top quark pole mass from inflationary observables and allow multi-dimensional parameter space to save the Higgs inflation, thanks to the additional parameters (the dark Higgs boson mass m(phi), the mixing angle a between the SM Higgs H and dark Higgs Phi, and the mixed quartic coupling) affecting RG-running of the Higgs quartic coupling. The effect of Higgs portal interactions may lead to a larger tensor-to-scalar ratio, 0.08 less than or similar to r less than or similar to 0.1, by adjusting relevant parameters in wide ranges of alpha and m(phi), some region of which can be probed at future colliders. Performing a numerical analysis we find an allowed region of parameters, matching the latest Planck data.
Address [Kim, Jinsu; Ko, Pyungwon] Korea Inst Adv Study, Quantum Universe Ctr, 85 Hoegiro Dongdaemungu, Seoul 02455, South Korea, Email: kimjinsu@kias.re.kr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000399455000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3080
Permanent link to this record
 

 
Author Adhikari, R. et al; Pastor, S.; Valle, J.W.F.
Title A White Paper on keV sterile neutrino Dark Matter Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 025 - 247pp
Keywords cosmological neutrinos; dark matter experiments; dark matter theory; particle physics – cosmology connection
Abstract We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
Address [Drewes, M.; Ibarra, A.; Lasserre, T.; Oberauer, L.; Schoenert, S.] Tech Univ Munich, Phys Dept & Excellence Cluster Univ, James Franck Str 1, D-85748 Garching, Germany, Email: marcodrewes@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000399409800025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3109
Permanent link to this record