|   | 
Details
   web
Records
Author Otal, A.; Celada, F.; Chimeno, J.; Vijande, J.; Pellejero, S.; Perez-Calatayud, M.J.; Villafranca, E.; Fuentemilla, N.; Blazquez, F.; Rodriguez, S.; Perez-Calatayud, J.
Title Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives Type Journal Article
Year 2022 Publication Cancers Abbreviated Journal Cancers
Volume 14 Issue 14 Pages 3467 - 15pp
Keywords cervix; treatment planning systems; interstitial applicators; magnetic resonance
Abstract Simple Summary There are no brachytherapy treatment planning systems (TPS) exclusively for the treatment of cervical tumours, so general-purpose TPSs are used. However, these treatments have some particular features concerning the treatment of other pathologies, especially in the case of exclusive use of MRI as an imaging modality and the presence of gynaecological applicators in combination with an interstitial part. That is why it is essential to review the latest versions of commercial TPSs to find the potential features to improve with the help of a group of experimented medical physicists and radiation oncologists. Furthermore, after reviewing the recent literature for advances applicable to cervical brachytherapy and through his own clinical experience, possible improvements are proposed to software providers for the development of new tools. Intracavitary brachytherapy (BT, Interventional Radiotherapy, IRT), plays an essential role in the curative intent of locally advanced cervical cancer, for which the conventional approach involves external beam radiotherapy with concurrent chemotherapy followed by BT. This work aims to review the different methodologies used by commercially available treatment planning systems (TPSs) in exclusive magnetic resonance imaging-based (MRI) cervix BT with interstitial component treatments. Practical aspects and improvements to be implemented into the TPSs are discussed. This review is based on the clinical expertise of a group of radiation oncologists and medical physicists and on interactive demos provided by the software manufacturers. The TPS versions considered include all the new tools currently in development for future commercial releases. The specialists from the supplier companies were asked to propose solutions to some of the challenges often encountered in a clinical environment through a questionnaire. The results include not only such answers but also comments by the authors that, in their opinion, could help solve the challenges covered in these questions. This study summarizes the possibilities offered nowadays by commercial TPSs, highlighting the absence of some useful tools that would notably improve the planning of MR-based interstitial component cervix brachytherapy.
Address [Otal, Antonio] Hosp Arnau Vilanova, Med Phys Dept, Lleida 25198, Spain, Email: aotalpalacin@gmail.com;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000832057600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5304
Permanent link to this record
 

 
Author SCiMMA and SNEWS Collaborations (Baxter, A.L. et al); Colomer, M.
Title Collaborative experience between scientific software projects using Agile Scrum development Type Journal Article
Year 2022 Publication Software-Practice & Experience Abbreviated Journal Softw.-Pract. Exp.
Volume 52 Issue Pages 2077-2096
Keywords Agile; cyberinfrastructure; multimessenger astrophysics; scientific computing; software development
Abstract Developing sustainable software for the scientific community requires expertise in software engineering and domain science. This can be challenging due to the unique needs of scientific software, the insufficient resources for software engineering practices in the scientific community, and the complexity of developing for evolving scientific contexts. While open-source software can partially address these concerns, it can introduce complicating dependencies and delay development. These issues can be reduced if scientists and software developers collaborate. We present a case study wherein scientists from the SuperNova Early Warning System collaborated with software developers from the Scalable Cyberinfrastructure for Multi-Messenger Astrophysics project. The collaboration addressed the difficulties of open-source software development, but presented additional risks to each team. For the scientists, there was a concern of relying on external systems and lacking control in the development process. For the developers, there was a risk in supporting a user-group while maintaining core development. These issues were mitigated by creating a second Agile Scrum framework in parallel with the developers' ongoing Agile Scrum process. This Agile collaboration promoted communication, ensured that the scientists had an active role in development, and allowed the developers to evaluate and implement the scientists' software requirements. The collaboration provided benefits for each group: the scientists actuated their development by using an existing platform, and the developers utilized the scientists' use-case to improve their systems. This case study suggests that scientists and software developers can avoid scientific computing issues by collaborating and that Agile Scrum methods can address emergent concerns.
Address [Baxter, Amanda L.; Clark, Michael; Kopec, Abigail; Lang, Rafael F.; Li, Shengchao; Linvill, Mark W.; Milisavljevic, Danny; Weil, Kathryn E.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA, Email: adepoian@purdue.edu;
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-0644 ISBN Medium
Area Expedition Conference
Notes WOS:000830363800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5305
Permanent link to this record
 

 
Author Li, J.T.; Lin, J.X.; Zhang, G.J.; Liang, W.H.; Oset, E.
Title The (B)over-bar(s)(0) -> J/psi pi(0)eta decay and the a(0)(980)- f(0)(980) mixing Type Journal Article
Year 2022 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 46 Issue 8 Pages 083108 - 6pp
Keywords strange B meson decay; isospin violation; a(0)(980)-f(0)(980) mixing; hadronic structure
Abstract We study the (B) over bar (0)(s) -> J/psi f(0)(980) and (B) over bar (0)(s) -> J/psi a(0)(980) reactions, and pay attention to the different sources of isospin violation and mixing of f(0)(980) and a(0)(980) resonances where these resonances are dynamically generated from meson-meson interactions. We fmd that the main cause of isospin violation is isospin breaking in the meson-meson transition T matrices, and the other source is that the loops involving kaons in the production mechanism do not cancel due to the different masses of charged and neutral kaons. We obtain a branching ratio for a(0)(980) production of the order of 5 x 10(-6) . Future experiments can address this problem, and the production rate and shape of the pi(0)eta mass distribution will definitely help to better understand the nature of scalar resonances.
Address [Li, Jia-Ting; Lin, Jia-Xin; Zhang, Gong-Jie; Liang, Wei-Hong; Oset, E.] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000829561600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5306
Permanent link to this record
 

 
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S.
Title Constraining new physics with Borexino Phase-II spectral data Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 138 - 35pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties
Abstract We present a detailed analysis of the spectral data of Borexino Phase II, with the aim of exploiting its full potential to constrain scenarios beyond the Standard Model. In particular, we quantify the constraints imposed on neutrino magnetic moments, neutrino non-standard interactions, and several simplified models with light scalar, pseudoscalar or vector mediators. Our analysis shows perfect agreement with those performed by the collaboration on neutrino magnetic moments and neutrino non-standard interactions in the same restricted cases and expands beyond those, stressing the interplay between flavour oscillations and flavour non-diagonal interaction effects for the correct evaluation of the event rates. For simplified models with light mediators we show the power of the spectral data to obtain robust limits beyond those previously estimated in the literature.
Address [Coloma, Pilar; Maltoni, Michele] CSIC UAM, Inst Fis Teor IFT CFTMAT, Calle Nicolas Cabrera 1315,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000829963100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5307
Permanent link to this record
 

 
Author Rinaldi, M.; Ceccopieri, F.A.; Vento, V.
Title The pion in the graviton soft-wall model: phenomenological applications Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 7 Pages 626 - 18pp
Keywords
Abstract The holographic graviton soft-wall model, introduced to describe the spectrum of scalar and tensor glueballs, is improved to incorporate the realization of chiral-symmetry as in QCD. Such a goal is achieved by including the longitudinal dynamics of QCD into the scheme. Using the relation between AdS/QCD and light-front dynamics, we construct the appropriate wave function for the pion which is used to calculate several pion observables. The comparison of our results with phenomenology is remarkably successful.
Address [Rinaldi, Matteo] Univ Perugia, Ist Nazl Fis Nucl, Dipartimento Fis & Geol, Sect Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000828534300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5300
Permanent link to this record