|   | 
Details
   web
Records
Author Carcamo Hernandez, A.E.; Hati, C.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic neutrino masses with gauged matter parity and gauge coupling unification Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 034 - 25pp
Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics
Abstract Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group SU(3)(c) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N), whose spontaneous breaking leaves a residual conserved matter parity, M-P, stabilizing the DM particle candidates of the model. The key role is played by Majorana SU(3) (L)-octet leptons, allowing the successful gauge coupling unification and a one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a plethora of new particles at the less than or similar to O(10) TeV scale, hence accessible to future collider and low-energy experiments.
Address [Carcamo Hernandez, A. E.] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000766168700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5162
Permanent link to this record
 

 
Author de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic Majorana neutrino masses in a predictive orbifold theory of flavor Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 5 Pages 055030 - 12pp
Keywords
Abstract The use of extra space-time dimensions provides a promising approach to the flavor problem. The chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4 symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP dark matter candidate.
Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos, Jalisco, Mexico, Email: fran@tepaits.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000783936600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5202
Permanent link to this record
 

 
Author de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Revamping Kaluza-Klein dark matter in an orbifold theory of flavor Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 3 Pages 035046 - 11pp
Keywords
Abstract We suggest a common origin for dark matter, neutrino mass and family symmetry within the orbifold theory proposed in [Phys. Lett. B 801, 135195 (2020); Phys. Rev. D 101, 116012 (2020)]. Flavor physics is described by an A(4) family symmetry that results naturally from compactification. Weakly interacting massive particle dark matter emerges from the first Kaluza-Klein excitation of the same scalar that drives family symmetry breaking and neutrino masses through the inverse seesaw mechanism. In addition to the “golden” quark-lepton mass relation and predictions for 0 nu beta beta decay, the model provides a good global description of all flavor observables.
Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos 47600, Jalisco, Mexico, Email: fran@tepaits.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001162626800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5954
Permanent link to this record