toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Double shadows of reflection-asymmetric wormholes supported by positive energy thin-shells Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 066 - 26pp  
  Keywords modified gravity; Wormholes; gravity  
  Abstract We consider reflection-asymmetric thin-shell wormholes within Palatini f(R) gravity using a matching procedure of two patches of electrovacuum space-times at a hypersurface (the shell) via suitable junction conditions. The conditions for having (linearly) stable wormholes supported by positive-energy matter sources are determined. We also identify some subsets of parameters able to locate the shell radius above the event horizon (when present) but below the photon sphere (on both sides). We illustrate with an specific example that such two photon spheres allow an observer on one of the sides of the wormhole to see another (circular) shadow in addition to the one generated by its own photon sphere, which is due to the photons passing above the maximum of the effective potential on its side and bouncing back across the throat due to a higher effective potential on the other side. We finally comment on the capability of these double shadows to seek for traces of new gravitational physics beyond that described by General Relativity.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000644501000029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4823  
Permanent link to this record
 

 
Author Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R. url  doi
openurl 
  Title Dark matter candidates in the NMSSM with RH neutrino superfields Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 067 - 35pp  
  Keywords dark matter theory; dark matter detectors  
  Abstract R-parity conserving supersymmetric models with right-handed (RH) neutrinos are very appealing since they could naturally explain neutrino physics and also provide a good dark matter (DM) candidate such as the lightest supersymmetric particle (LSP). In this work we consider the next-to-minimal supersymmetric standard model (NMSSM) plus RH neutrino superfields, with effective Majorana masses dynamically generated at the electroweak scale (EW). We perform a scan of the relevant parameter space and study both possible DM candidates: RH sneutrino and neutralino. Especially for the case of RH sneutrino DM we analyse the intimate relation between both candidates to obtain the correct amount of relic density. Besides the well-known resonances, annihilations through scalar quartic couplings and coannihilation mechanisms with all kind of neutralinos, are crucial. Finally, we present the impact of current and future direct and indirect detection experiments on both DM candidates.  
  Address [Lopez-Fogliani, Daniel E.] Univ Buenos Aires, Fac Ciencia Exactas & Nat, Inst Fis Buenos Aires UBA, RA-1428 Buenos Aires, DF, Argentina, Email: daniel.lopez@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000644501000049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4824  
Permanent link to this record
 

 
Author Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y. url  doi
openurl 
  Title Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 073 - 33pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).  
  Address [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647827600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4827  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102605 - 8pp  
  Keywords  
  Abstract The current cosmological probes have provided a fantastic confirmation of the standard A Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4 sigma – tension between the Planck estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade's experiments will be crucial.  
  Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4853  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Cosmology intertwined III: f sigma(8) and S-8 Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102604 - 6pp  
  Keywords cosmological tensions; cosmological parameters  
  Abstract The standard A Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few statistically significant tensions and anomalies were found in the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension between Planck data and weak lensing measurements and redshift surveys, in the value of the matter energy density Omega(m), and the amplitude sigma(8) (or the growth rate f sigma(8)) of cosmic structure. We list a few promising models for solving this tension, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters.  
  Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4854  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva