toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. url  doi
openurl 
  Title Contribution of constituent quark model c(s)over-bar states to the dynamics of the D*s0 (2317) and Ds1(2460) resonances Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 78 Issue 9 Pages 722 - 22pp  
  Keywords  
  Abstract The masses of the D*(s0) (2317) and D-s1(2460) resonances lie below the DK and D* K thresholds respectively, which contradicts the predictions of naive quark models and points out to non-negligible effects of the D(*) K loops in the dynamics of the even-parity scalar (J(pi) = 0(+)) and axial-vector (J(pi) = 1(+)) c (s) over bar systems. Recent lattice QCD studies, incorporating the effects of the D(*) K channels, analyzed these spin-parity sectors and correctly described the D*(s0)(2317) – D-s1(2460) mass splitting. Motivated by such works, we study the structure of the D*(s0)(2317) and D-s1(2460) resonances in the framework of an effective field theory consistent with heavy quark spin symmetry, and that incorporates the interplay between D(*) K meson-meson degrees of freedom and bare P-wave c (s) over bar states predicted by constituent quark models. We extend the scheme to finite volumes and fit the strength of the coupling between both types of degrees of freedom to the available lattice levels, which we successfully describe. We finally estimate the size of the D(*) K two-meson components in the D*(s0)(2317) and D-s1(2460) resonances, and we conclude that these states have a predominantly hadronic-molecular structure, and that it should not be tried to accommodate these mesons within c (s) over bar constituent quark model patterns.  
  Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain, Email: albaladejo@um.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443822000003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3714  
Permanent link to this record
 

 
Author Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Yao, D.L. url  doi
openurl 
  Title Towards a new paradigm for heavy-light meson spectroscopy Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 9 Pages 094018 - 8pp  
  Keywords  
  Abstract Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451000200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3817  
Permanent link to this record
 

 
Author Yao, D.L.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title New parametrization of the form factors in (B)over-bar -> Dl(nu)over-bar(l) decays Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 3 Pages 034014 - 7pp  
  Keywords  
  Abstract A new model-independent parametrization is proposed for the hadronic form factors in the semileptonic (B) over bar -> Dl (nu) over bar (l) decay. By a combined consideration of the recent experimental and lattice QCD data, we determine precisely the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar = 41.01(75) x 10(-3) and the ratio R-D = BR((B) over bar -> D tau(nu) over bar (tau))/BR((B) over bar -> Dl (nu) over bar (l)) = 0.301(5). The coefficients in this parametrization, related to phase shifts by sumrulelike dispersion relations and hence called phase moments, encode important scattering information of the (B) over bar (D) over bar interactions which are poorly known so far. Thus, we give strong hints about the existence of at least one bound and one virtual (B) over bar (D) over bar S-wave 0(+) states, subject to uncertainties produced by potentially sizable inelastic effects. This formalism is also applicable for any other semileptonic processes induced by the weak b -> c transition.  
  Address [Yao, De-Liang] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513217400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4277  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva