toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arguelles, C.A. et al; Barenboim, G. url  doi
openurl 
  Title Snowmass white paper: beyond the standard model effects on neutrino flavor Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 1 Pages 15 - 57pp  
  Keywords  
  Abstract Neutrinos are one of the most promising messengers for signals of new physics Beyond the Standard Model (BSM). On the theoretical side, their elusive nature, combined with their unknown mass mechanism, seems to indicate that the neutrino sector is indeed opening a window to new physics. On the experimental side, several long-standing anomalies have been reported in the past decades, providing a strong motivation to thoroughly test the standard three-neutrino oscillation paradigm. In this Snowmass21 white paper, we explore the potential of current and future neutrino experiments to explore BSM effects on neutrino flavor during the next decade.  
  Address [Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000912507200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5459  
Permanent link to this record
 

 
Author Garcia Soto, A.; Garg, D.; Reno, M.H.; Arguelles, C.A. url  doi
openurl 
  Title Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 3 Pages 033009 - 9pp  
  Keywords  
  Abstract The next generation of radio telescopes will be sensitive to low-scale quantum gravity by measuring ultrahigh-energy neutrinos. In this work, we demonstrate for the first time that neutrino-nucleon soft interactions induced by TeV-scale gravity would significantly increase the number of events detected by the IceCube-Gen2 radio array in the EeV regime. However, we show that these experiments cannot measure the total cross section using only the angular and energy information of the neutrino flux, unless assumptions on the underlying inelasticity distribution of neutral interactions are made.  
  Address [Garcia-Soto, A.; Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001004183600015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5557  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva