toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alvarado, F.; An, D.; Alvarez-Ruso, L.; Leupold, S. url  doi
openurl 
  Title Light quark mass dependence of nucleon electromagnetic form factors in dispersively modified chiral perturbation theory Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 11 Pages 114021 - 23pp  
  Keywords  
  Abstract The nucleon isovector electromagnetic form factors are calculated up to next-to-next-to-leading order by combining relativistic chiral perturbation theory (ChPT) of pion, nucleon, and Delta o1232 thorn with dispersion theory. We specifically address the light-quark mass dependence of the form factors, achieving a good description of recent lattice QCD results over a range of Q2 less than or similar to 0.6 GeV2 and M pi less than or similar to 350 MeV. For the Dirac form factor, the combination of ChPT and dispersion theory outperforms the pure dispersive and pure ChPT descriptions. For the Pauli form factor, the combined calculation leads to results comparable to the purely dispersive ones. The anomalous magnetic moment and the Dirac and Pauli radii are extracted.  
  Address [Alvarado, Fernando; Alvarez-Ruso, Luis] CSIC, Inst Fis Corpuscular IF, E-46980 Paterna, Valencia, Spain, Email: Fernando.Alvarado@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title (down) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001138524400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5906  
Permanent link to this record
 

 
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 029 - 25pp  
  Keywords leptogenesis; dark matter theory; gravitational waves / theory  
  Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.  
  Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title (down) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246744300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6162  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva