|   | 
Details
   web
Records
Author Bruschini, R.; Gonzalez, P.
Title Diabatic description of bottomoniumlike mesons Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 11 Pages 114016 - 13pp
Keywords
Abstract We apply the diabatic approach, specially suited for a QCD based study of conventional (quark-antiquark) and unconventional (quark-antiquark + meson-meson) meson states, to the description of hidden-bottom mesons. A spectral analysis of the I = 0, J(++) and 1(--) resonances with masses up to about 10.8 GeV is carried out. Masses and widths of all the experimentally known resonances, including conventional and unconventional states, can be well reproduced. In particular, we predict a significant B (B) over bar* component in Upsilon(10580). We also predict the existence of a not yet discovered unconventional 1(++) narrow state, with a significant B-s(B) over bar (s)* content making it to decay into Upsilon(1S)phi, whose experimental discovery would provide definite support to our theoretical analysis.
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular, Unidad Teor, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000663019400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4860
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 819 Issue Pages 136458 - 14pp
Keywords
Abstract We analyze the consistency of electroweak breaking, neutrino and dark matter phenomenology within the simplest scoto-seesaw model. By adding the minimal dark sector to the simplest “missing partner” type-I seesaw one has a physical picture for the neutrino oscillation lengths: the “atmospheric” mass scale arises from the tree-level seesaw, while the “solar” scale is induced radiatively, mediated by the dark sector. We identify parameter regions consistent with theoretical constraints, as well as dark matter relic abundance and direct detection searches. Using two-loop renormalization group equations we explore the stability of the vacuum and the consistency of the underlying dark parity symmetry. One also has a lower bound for the neutrinoless double beta decay amplitude.
Address [Mandal, Sanjoy; Valle, Jose W. F.] CSIC Univ Valencia, AHEP Grp, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000679259200021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4921
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 819 Issue Pages 136412 - 22pp
Keywords
Abstract A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass m(ll) < 30 GeV is presented. The analysis is performed using 139 fb(-1) of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the H -> ll(gamma) process is found with a significance of 3.2 over the background-only hypothesis, compared to an expected significance of 2.1 for the Standard Model prediction. The best-fit value of the signal-strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is μ= 1.5 +/- 0.5. The Higgs boson production cross-section times the H -> ll(gamma) branching ratio for m(ll) < 30 GeV is determined to be 8.7(-2.7)(+2.8) fb.
Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000679259200033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4922
Permanent link to this record
 

 
Author Otten, S.; Caron, S.; de Swart, W.; van Beekveld, M.; Hendriks, L.; van Leeuwen, C.; Podareanu, D.; Ruiz de Austri, R.; Verheyen, R.
Title Event generation and statistical sampling for physics with deep generative models and a density information buffer Type Journal Article
Year 2021 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume 12 Issue 1 Pages 2985 - 16pp
Keywords
Abstract Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with several generative machine learning models to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e(+)e(-)-> Z -> l(+)l(-) and pp -> tt<mml:mo><overbar></mml:mover> including the decay of the top quarks and a simulation of the detector response. By buffering density information of encoded Monte Carlo events given the encoder of a Variational Autoencoder we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g., for the phase space integration of matrix elements in quantum field theories. Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.
Address [Otten, Sydney; Caron, Sascha; de Swart, Wieske; van Beekveld, Melissa; Hendriks, Luc; Verheyen, Rob] Radboud Univ Nijmegen, Inst Math Astro & Particle Phys IMAPP, Nijmegen, Netherlands, Email: Sydney.Otten@ru.nl
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes WOS:000658761600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4862
Permanent link to this record
 

 
Author Barenboim, G.; Turner, J.; Zhou, Y.L.
Title Light neutrino masses from gravitational condensation: the Schwinger-Dyson approach Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 6 Pages 511 - 12pp
Keywords
Abstract In this work we demonstrate that non-zero neutrino masses can be generated from gravitational interactions. We solve the Schwinger-Dyson equations to find a non-trivial vacuum thereby determining the neutrino condensate scale and the number of new particle degrees of freedom required for gravitationally induced dynamical chiral symmetry breaking. We show for minimal beyond the Standard Model particle content, the scale of the condensation occurs close to the Planck scale.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, Burjassot 46100, Spain, Email: jessica.turner@durham.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000660017000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4863
Permanent link to this record