toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dercks, D.; Dreiner, H.K.; Hirsch, M.; Wang, Z.S. url  doi
openurl 
  Title Long-lived fermions at AL3X Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 5 Pages 055020 - 10pp  
  Keywords  
  Abstract Recently Gligorov et al. [V. V. Gligorov et al., Phys. Rev. D 99, 015023 (2019)] proposed to build a cylindrical detector named AL3X close to the ALICE experiment at interaction point (IP) 2 of the LHC, aiming for discovery of long-lived particles (LLPs) during Run 5 of the HL-LHC. We investigate the potential sensitivity reach of this detector in the parameter space of different new-physics models with long-lived fermions namely heavy neutral leptons (HNLs) and light supersymmetric neutralinos, which have both not previously been studied in this context. Our results show that the AL3X reach can be complementary or superior to that of other proposed detectors such as CODEX-b, FASER, MATHUSLA and SHiP.  
  Address [Dercks, Daniel] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: daniel.dercks@desy.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461906400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3949  
Permanent link to this record
 

 
Author Arnault, P.; Perez, A.; Arrighi, P.; Farrelly, T. url  doi
openurl 
  Title Discrete-time quantum walks as fermions of lattice gauge theory Type Journal Article
  Year 2019 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 99 Issue 3 Pages 032110 - 16pp  
  Keywords  
  Abstract It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time.  
  Address [Arnault, Pablo; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: pablo.arnault@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461896700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3950  
Permanent link to this record
 

 
Author Llosa, G. doi  openurl
  Title SiPM-based Compton cameras Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 926 Issue Pages 148-152  
  Keywords Compton camera; Silicon photomultiplier (SiPM)  
  Abstract Compton cameras have been developed for almost fifty years in various fields (astronomy, medical imaging, safety and industrial inspections, etc.), employing different types of detectors. Their potential use has gained renewed interest with the emergence of high light yield scintillator crystals and silicon photomultipliers (SiPMs). This combination provides good performance and operation simplicity at an affordable cost, raising again the interest in this type of systems. SiPM-based Compton cameras are being assessed for diverse applications with promising results.  
  Address [Llosa, G.] UVEG, CSIC, Inst Fis Corpuscular IFIC, C Catedrat Beltran 2, E-46980 Valencia, Spain, Email: llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461775500011 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3951  
Permanent link to this record
 

 
Author Farzan, Y.; Palomares-Ruiz, S. url  doi
openurl 
  Title Flavor of cosmic neutrinos preserved by ultralight dark matter Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 5 Pages 051702 - 8pp  
  Keywords  
  Abstract Within the standard propagation scenario, the flavor ratios of high-energy cosmic neutrinos at neutrino telescopes are expected to be around the democratic benchmark resulting from hadronic sources, (1/3:1/3:1/3)(circle plus). We show how the coupling of neutrinos to an ultralight dark matter complex scalar field would induce an effective neutrino mass that could lead to adiabatic neutrino propagation. This would result in the preservation at the detector of the production flavor composition of neutrinos at sources. This effect could lead to flavor ratios at detectors well outside the range predicted by the standard scenario of averaged oscillations. We also present an electroweak-invariant model that would lead to the required effective interaction between neutrinos and dark matter.  
  Address [Farzan, Yasaman] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran, Email: yasaman@theory.ipm.ac.ir;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461908100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3952  
Permanent link to this record
 

 
Author Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R. doi  openurl
  Title Implementing the three-particle quantization condition including higher partial waves Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 106 - 56pp  
  Keywords Lattice QCD; Lattice Quantum Field Theory; Scattering Amplitudes  
  Abstract We present an implementation of the relativistic three-particle quantization condition including both s- and d-wave two-particle channels. For this, we develop a systematic expansion of the three-particle K matrix, K-df,K-3, about threshold, which is the generalization of the effective range expansion of the two-particle K matrix, K-2. Relativistic invariance plays an important role in this expansion. We find that d-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle d-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle d-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3 pi(+) system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of K-df,K-3. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.  
  Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Dept Phys, 3910 15th Ave NE, Seattle, WA 98195 USA, Email: blanton1@uw.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462325900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3953  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva