|   | 
Details
   web
Records
Author Fernandez-Carames, T.; Valcarce, A.; Vijande, J.
Title Doubly charmed exotic mesons: A gift of nature? Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 699 Issue 4 Pages 291-295
Keywords Exotic mesons; Quark model; Multiquark states
Abstract We study doubly charmed exotic states by solving the scattering problem of two D mesons. Our results point to the existence of a stable isoscalar doubly charmed meson with quantum numbers (I)J(P) = (0)1(+). We perform a thorough comparison to the results obtained within the hyperspherical harmonic formalism. Such exotic states could be measured at LHC and RHIC. Their experimental observation would, for the first time, confirm the contribution of multiquark structures to hadron spectroscopy.
Address [Carames, T. F.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: valcarce@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000291073200016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 634
Permanent link to this record
 

 
Author CDF Collaboration (Aaltonen, T. et al); Cabrera, S.
Title Measurement of the B- lifetime using a simulation free approach for trigger bias correction Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 3 Pages 032008 - 30pp
Keywords
Abstract The collection of a large number of B-hadron decays to hadronic final states at the CDF II Detector is possible due to the presence of a trigger that selects events based on track impact parameters. However, the nature of the selection requirements of the trigger introduces a large bias in the observed proper-decay-time distribution. A lifetime measurement must correct for this bias, and the conventional approach has been to use a Monte Carlo simulation. The leading sources of systematic uncertainty in the conventional approach are due to differences between the data and the Monte Carlo simulation. In this paper, we present an analytic method for bias correction without using simulation, thereby removing any uncertainty due to the differences between data and simulation. This method is presented in the form of a measurement of the lifetime of the B- using the mode B- -> D-0 pi(-). The B- lifetime is measured as tau(-)(B) = 1.663 +/- 0.023 +/- 0.015 ps, where the first uncertainty is statistical and the second systematic. This new method results in a smaller systematic uncertainty in comparison to methods that use simulation to correct for the trigger bias.
Address [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000287393900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 601
Permanent link to this record
 

 
Author Borja, E.F.; Freidel, L.; Garay, I.; Livine, E.R.
Title U(N) tools for loop quantum gravity: the return of the spinor Type Journal Article
Year 2011 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 28 Issue 5 Pages 055005 - 28pp
Keywords
Abstract We explore the classical setting for the U(N) framework for SU(2) intertwiners for loop quantum gravity and describe the corresponding phase space in terms of spinors with the appropriate constraints. We show how its quantization leads back to the standard Hilbert space of intertwiner states defined as holomorphic functionals. We then explain how to glue these intertwiners states in order to construct spin network states as wavefunctions on the spinor phase space. In particular, we translate the usual loop gravity holonomy observables to our classical framework. Finally, we propose how to derive our phase space structure from an action principle which induces non-trivial dynamics for the spin network states. We conclude by applying explicitly our framework to states living on the simple 2-vertex graph and discuss the properties of the resulting Hamiltonian.
Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: etera.livine@ens-lyon.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes ISI:000287308700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 579
Permanent link to this record
 

 
Author Navarro, J.; Guardiola, R.
Title Thermal Effects on Small Para-Hydrogen Clusters Type Journal Article
Year 2011 Publication International Journal of Quantum Chemistry Abbreviated Journal Int. J. Quantum Chem.
Volume 111 Issue 2 Pages 463-471
Keywords atomic and molecular clusters; phase transitions in clusters; structure of clusters; molecular hydrogen and isotopes
Abstract A brief review of different quantum Monte Carlo simulations of small (p-H-2)(N) clusters is presented. The clusters are viewed as a set of N structureless p-H-2 molecules, interacting via an isotropic pairwise potential. Properties as superfluidity, magic numbers, radial structure, excitation spectra, and abundance production of (p-H-2)(N) clusters are discussed and, whenever possible, a comparison with He-4(N) droplets is presented. All together, the simulations indicate that temperature has a paradoxical effect of the properties of (p-H-2)(N) clusters, as they are solid-like at high T and liquid-like at low T, due to quantum delocalization at the lowest temperature.
Address [Navarro, Jesus; Guardiola, Rafael] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain, Email: navarro@ific.uv.es
Corporate Author Thesis
Publisher John Wiley & Sons Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0020-7608 ISBN Medium
Area Expedition Conference
Notes ISI:000285311400028 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 589
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title Measurement of underlying event characteristics using charged particles in pp collisions at sqrt(s) = 900 GeV and 7 TeV with the ATLAS detector Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 11 Pages 112001 - 34pp
Keywords
Abstract Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The "underlying event'' is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the highest transverse momentum charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, transverse momentum density, and average p(T) are measured. The data show generally higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.
Address [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; McCarthy, R. L.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000291091000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 635
Permanent link to this record