toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Herrero-Garcia, J.; Nebot, M.; Rius, N.; Santamaria, A. url  doi
openurl 
  Title The Zee-Babu model revisited in the light of new data Type Journal Article
  Year 2014 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 885 Issue Pages 542-570  
  Keywords  
  Abstract We update previous analyses of the Zee-Babu model in the light of new data, e.g., the mixing angle On, the rare decay μ-> e gamma and the LHC results. We also analyze the possibility of accommodating the deviations in Gamma (H -> gamma gamma) hinted by the LHC experiments, and the stability of the scalar potential. We find that neutrino oscillation data and low energy constraints are still compatible with masses of the extra charged scalars accessible to LHC. Moreover, if any of them is discovered, the model can be falsified by combining the information on the singly and doubly charged scalar decay modes with neutrino data. Conversely, if the neutrino spectrum is found to be inverted and the CP phase delta is quite different from pi, the masses of the charged scalars will be well outside the LHC reach.  
  Address [Herrero-Garcia, Juan; Rius, Nuria; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339598300025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1858  
Permanent link to this record
 

 
Author de Gouvea, A.; Herrero-Garcia, J.; Kobach, A. url  doi
openurl 
  Title Neutrino masses, grand unification, and baryon number violation Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 1 Pages 016011 - 11pp  
  Keywords  
  Abstract If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B – L) by two (or more) units, including neutron-antineutron oscillations and B – L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.  
  Address [de Gouvea, Andre; Herrero-Garcia, Juan; Kobach, Andrew] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339482900016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1860  
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Herrero-Garcia, J.; Restrepo, D.; Vicente, A. url  doi
openurl 
  Title Diboson anomaly: Heavy Higgs resonance and QCD vectorlike exotics Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 015012 - 12pp  
  Keywords  
  Abstract The ATLAS Collaboration (and also CMS) has recently reported an excess over Standard Model expectations for gauge boson pair production in the invariant mass region 1.8-2.2 TeV. In light of these results, we argue that such a signal might be the first manifestation of the production and further decay of a heavy CP-even Higgs resulting from a type-I two Higgs doublet model. We demonstrate that in the presence of colored vectorlike fermions, its gluon fusion production cross section is strongly enhanced, with the enhancement depending on the color representation of the new fermion states. Our findings show that barring the color triplet case, any QCD “exotic” representation can fit the ATLAS result in fairly large portions of the parameter space. We have found that if the diboson excess is confirmed and this mechanism is indeed responsible for it, then the LHC Run-2 should find (i) a CP-odd scalar with mass below similar to 2.3 TeV, (ii) new colored states with masses below similar to 2 TeV, (iii) no statistically significant diboson events in the W(+/-)Z channel, (iv) events in the triboson channels W(+/-)W(-/+)Z and ZZZ with invariant mass amounting to the mass of the CP-odd scalar.  
  Address [Sierra, D. Aristizabal] Univ Liege, Dept AGO, IFPA, Bat B5, B-4000 Liege 1, Belgium, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368516100007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2535  
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Rius, N.; Santamaria, A. url  doi
openurl 
  Title Higgs lepton flavour violation: UV completions and connection to neutrino masses Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 084 - 45pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract We study lepton violating Higgs (HLFV) decays, first from the effective field theory (EFT) point of view, and then analysing the different high-energy realizations of the operators of the EFT, highlighting the most promising models. We argue why two Higgs doublet models can have a BR(h -> tau mu) similar to 0:01, and why this rate is suppressed in all other realizations including vector-like leptons. We further discuss HLFV in the context of neutrino mass models: in most cases it is generated at one loop giving always BR (h -> tau mu) < 10(-4) and typically much less, which is beyond experimental reach. However, both the Zee model and extended left-right symmetric models contain extra SU(2) doublets coupled to leptons and could in principle account for the observed excess, with interesting connections between HLFV and neutrino parameters.  
  Address [Herrero-Garcia, Juan] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Theoret Phys, S-10691 Stockholm, Sweden, Email: juhg@kth.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387843300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2862  
Permanent link to this record
 

 
Author Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R. url  doi
openurl 
  Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
  Year 2017 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 5 Issue Pages 63 - 56pp  
  Keywords neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter  
  Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.  
  Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;  
  Corporate Author Thesis  
  Publisher Frontiers Research Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416908800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3393  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva