|   | 
Details
   web
Records
Author Segarra, A.; Bernabeu, J.
Title Absolute neutrino mass and the Dirac/Majorana distinction from the weak interaction of aggregate matter Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 9 Pages 093004 - 6pp
Keywords
Abstract The 2 nu-mediated force has a range of microns, well beyond the atomic scale. The effective potential is built from the t-channel absorptive part of the scattering amplitude and depends on neutrino properties on shell. We demonstrate that neutral aggregate matter has a weak charge and calculate the matrix of six coherent charges for its interaction with definite-mass neutrinos. Near the range of the potential the neutrino pair is nonrelativistic, leading to observable absolute mass and Dirac/Majorana distinction via different r-dependence and violation of the weak equivalence principle.
Address [Segarra, Alejandro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000532654200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4397
Permanent link to this record
 

 
Author Bernabeu, J.; Botella, F.J.; Nebot, M.; Segarra, A.
Title B-0 – (B)over-bar(0) entanglement for an ideal experiment for the direct CP violation phi(3)/gamma phase Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 5 Pages 054026 - 7pp
Keywords
Abstract B-0-(B) over bar0 entanglement offers a conceptual alternative to the single charged B-decay asymmetry for the measurement of the direct CP-violating gamma/phi(3) phase. With f = J/Psi(L); J/Psi K-S and g = (pi pi)(0); (rho(L)rho(L))(0), the 16 time-ordered double-decay rate intensities to (f, g) depend on the relative phase between the f- and g-decay amplitudes given by gamma at tree level. Several constraining consistencies appear. An intrinsic accuracy of the method at the level of +/- 1 degrees could be achievable at Belle-II with an improved determination of the penguin amplitude to g channels from existing facilities.
Address [Bernabeu, Jose; Botella, Francisco J.; Nebot, Miguel] Univ Valencia, Dept Theoret Phys, Valencia 46100, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000882839300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5406
Permanent link to this record
 

 
Author Bernabeu, J.; Sabulsky, D.O.; Sanchez, F.; Segarra, A.
Title Neutrino mass and nature through its mediation in atomic clock interference Type Journal Article
Year 2024 Publication AVS Quantum Science Abbreviated Journal AVS Quantum Sci.
Volume 6 Issue 1 Pages 014410 - 8pp
Keywords
Abstract The absolute mass of neutrinos and their nature are presently unknown. Aggregate matter has a coherent weak charge leading to a repulsive interaction mediated by a neutrino pair. The virtual neutrinos are non-relativistic at micron distances, giving a distinct behavior for Dirac versus Majorana mass terms. This effective potential allows for the disentanglement of the Dirac or Majorana nature of the neutrino via magnitude and distance dependence. We propose an experiment to search for this potential based on the concept that the density-dependent interaction of an atomic probe with a material source in one arm of an atomic clock interferometer generates a differential phase. The appropriate geometry of the device is selected using the saturation of the weak potential as a guide. The proposed experiment has the added benefit of being sensitive to gravity at micron distances. A strategy to suppress the competing Casimir-Polder interaction, depending on the electronic structure of the material source, as well as a way to compensate the gravitational interaction in the two arms of the interferometer is discussed.
Address [Bernabeu, Jose; Segarra, Alejandro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es
Corporate Author Thesis
Publisher AIP Publishing Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001186930100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6118
Permanent link to this record