Kowalska, M., Naimi, S., Agramunt, J., Algora, A., Beck, D., Blank, B., et al. (2012). Trap-assisted decay spectroscopy with ISOLTRAP. Nucl. Instrum. Methods Phys. Res. A, 689, 102–107.
Abstract: Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements.
|
Grieger, M., Hensel, T., Agramunt, J., Bemmerer, D., Degering, D., Dillmann, I., et al. (2020). Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated He-3 counters. Phys. Rev. D, 101(12), 123027–15pp.
Abstract: Ambient neutrons may cause significant background for underground experiments. Therefore, it is necessary to investigate their flux and energy spectrum in order to devise a proper shielding. Here, two sets of altogether ten moderated He-3 neutron counters are used for a detailed study of the ambient neutron background in tunnel IV of the Felsenkeller facility, underground below 45 m of rock in Dresden/Germany. One of the moderators is lined with lead and thus sensitive to neutrons of energies higher than 10 MeV. For each He-3 counter moderator assembly, the energy-dependent neutron sensitivity was calculated with the FLUKA code. The count rates of the ten detectors were then fitted with the MAXED and GRAVEL packages. As a result, both the neutron energy spectrum from 10(-9) to 300 MeV and the flux integrated over the same energy range were determined experimentally. The data show that at a given depth, both the flux and the spectrum vary significantly depending on local conditions. Energy-integrated fluxes of (0.61 +/- 0.05), (1.96 +/- 0.15), and (4.6 +/- 0.4) x 10(-4) cm(-2) s(-1), respectively, are measured for three sites within Felsenkeller tunnel IV which have similar muon flux but different shielding wall configurations. The integrated neutron flux data and the obtained spectra for the three sites are matched reasonably well by FLUKA Monte Carlo calculations that are based on the known muon flux and composition of the measurement room walls.
|
Bemmerer, D., Boeltzig, A., Grieger, M., Gudat, K., Hensel, T., Masha, E., et al. (2025). The Felsenkeller shallow-underground laboratory for nuclear astrophysics. Eur. Phys. J. A, 61(1), 19–15pp.
Abstract: In the Felsenkeller shallow-underground site, protected from cosmic muons by a 45 m thick rock overburden, a research laboratory including a 5 MV Pelletron ion accelerator and a number of radioactivity-measurement setups is located. The laboratory and its installations are described in detail. The background radiation has been studied, finding suppression factors of 40 for cosmic-ray muons, 200 for ambient neutrons, and 100 for the background in germanium gamma-ray detectors. Using an additional active muon veto, typically the background is just twice as high as in very deep underground laboratories. The properties of the accelerator including its external and internal ion sources and beam line are given. For the radioactivity counting setup, detection limits in the 10-4 Bq range have been obtained. Practical aspects for the usage of the laboratory by outside scientific users are discussed.
|